Skip to main content

Consensus on Demand

  • Conference paper
  • First Online:
Stabilization, Safety, and Security of Distributed Systems (SSS 2022)

Abstract

Digital money can be implemented efficiently by avoiding consensus. However, no-consensus designs are fundamentally limited, as they cannot support general smart contracts, and similarly they cannot deal with conflicting transactions.

We present a novel protocol that combines the benefits of an asynchronous, broadcast-based digital currency, with the capacity to perform consensus. This is achieved by selectively performing consensus a posteriori, i.e., only when absolutely necessary. Our on-demand consensus comes at the price of restricting the Byzantine participants to be less than a one-fifth minority in the system, which is the optimal threshold.

We formally prove the correctness of our system and present an open-source implementation, which inherits many features from the Ethereum ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Prime: byzantine replication under attack. IEEE Trans. Dependable Secure Comput. 8, 564–577 (2011)

    Article  Google Scholar 

  2. Antoniadis, K., Desjardins, A., Gramoli, V., Guerraoui, R., Zablotchi, I.: Leaderless consensus. In: 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS), pp. 392–402 (2021)

    Google Scholar 

  3. Auvolat, A., Frey, D., Raynal, M., Taïani, F.: Money transfer made simple: a specification, a generic algorithm, and its proof. arXiv preprint arXiv:2006.12276 (2020)

  4. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: formalization of distributed ledger sharding protocols. arXiv preprint arXiv:1910.10434 (2019)

  5. Baudet, M., Danezis, G., Sonnino, A.: Fastpay: high-performance byzantine fault tolerant settlement. In: Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, pp. 163–177 (2020)

    Google Scholar 

  6. Bazzi, R., Herlihy, M.: Clairvoyant state machine replication. Inf. Comput. 285, 104701 (2021)

    Google Scholar 

  7. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. JACM 32(4), 824–840 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: specification, verification, optimality. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 271–284. POPL 2014, Association for Computing Machinery, New York, NY, USA (2014)

    Google Scholar 

  10. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst. (TOCS) 20(4), 398–461 (2002)

    Article  Google Scholar 

  11. Clement, A., Wong, E., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine fault tolerant systems tolerate byzantine faults. In: Proceedings of the 6th USENIX Symposium on Networked Systems Design and Implementation, pp. 153–168. NSDI 2009, USENIX Association, USA (2009)

    Google Scholar 

  12. Collins, D., et al.: Online payments by merely broadcasting messages. In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 26–38. IEEE (2020)

    Google Scholar 

  13. Crain, T., Natoli, C., Gramoli, V.: Red belly: a secure, fair and scalable open blockchain. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 466–483. IEEE (2021)

    Google Scholar 

  14. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: a DAG-based mempool and efficient BFT consensus. In: Proceedings of the 17th European Conference on Computer Systems, pp. 34–50 (2022)

    Google Scholar 

  15. Duan, S., Reiter, M.K., Zhang, H.: Beat: asynchronous BFT made practical. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 2028–2041. CCS 2018 (2018)

    Google Scholar 

  16. Foundation, E.: Ethereum wire protocol (eth) (2021). https://github.com/ethereum/devp2p/blob/master/caps/eth.md

  17. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th symposium on operating systems principles, pp. 51–68 (2017)

    Google Scholar 

  18. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.A., Vonlanthen, Y.: Scalable byzantine reliable broadcast (extended version). arXiv preprint arXiv:1908.01738 (2019)

  19. Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovič, M., Seredinschi, D.A.: The consensus number of a cryptocurrency. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing - PODC 2019 (2019)

    Google Scholar 

  20. Gupta, S.: A non-consensus based decentralized financial transaction processing model with support for efficient auditing. Arizona State University (2016)

    Google Scholar 

  21. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. (TOPLAS) 13(1), 124–149 (1991)

    Article  Google Scholar 

  22. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  23. Kursawe, K.: Optimistic byzantine agreement. In: 21st IEEE Symposium on Reliable Distributed Systems, 2002. Proceedings, pp. 262–267. IEEE (2002)

    Google Scholar 

  24. Kuznetsov, P., Tonkikh, A., Zhang, Y.X.: Revisiting optimal resilience of fast byzantine consensus. In: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing, pp. 343–353 (2021)

    Google Scholar 

  25. Lamport, L.: Generalized consensus and paxos (2005)

    Google Scholar 

  26. Lamport, L.: Lower bounds for asynchronous consensus. Distrib. Comput. 19(2), 104–125 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Malkhi, D., Reiter, M.: A high-throughput secure reliable multicast protocol. J. Comput. Secur. 5(2), 113–127 (1997)

    Article  Google Scholar 

  28. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secure Comput. 3(3), 202–215 (2006)

    Article  Google Scholar 

  29. Mathys, M., Schmid, R., Sliwinski, J., Wattenhofer, R.: A limitlessly scalable transaction system. In: 6th International Workshop on Cryptocurrencies and Blockchain Technology (CBT), Copenhagen, Denmark (2022)

    Google Scholar 

  30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://www.bitcoin.org/bitcoin.pdf

  31. Nasirifard, P., Mayer, R., Jacobsen, H.A.: Fabriccrdt: a conflict-free replicated datatypes approach to permissioned blockchains. In: Proceedings of the 20th International Middleware Conference, pp. 110–122. Middleware 2019 (2019)

    Google Scholar 

  32. Pedone, F., Schiper, A.: Generic broadcast. In: Jayanti, P. (ed.) DISC 1999. LNCS, vol. 1693, pp. 94–106. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48169-9_7

    Chapter  Google Scholar 

  33. Pires, M., Ravi, S., Rodrigues, R.: Generalized paxos made byzantine (and less complex). Algorithms 11(9), 141 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Preguiça, N.: Conflict-free replicated data types: an overview. arXiv preprint arXiv:1806.10254 (2018)

  35. Raykov, P., Schiper, N., Pedone, F.: Byzantine fault-tolerance with commutative commands. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 329–342. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25873-2_23

    Chapter  Google Scholar 

  36. Sliwinski, J., Vonlanthen, Y., Wattenhofer, R.: Consensus on demand. arXiv preprint arXiv:2202.03756 (2022)

  37. Sliwinski, J., Wattenhofer, R.: Asynchronous proof-of-stake. In: 23rd International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS) (2021)

    Google Scholar 

  38. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0_30

    Chapter  Google Scholar 

  39. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distrib. Comput. 2(2), 80–94 (1987)

    Article  Google Scholar 

  40. Suri-Payer, F., Burke, M., Wang, Z., Zhang, Y., Alvisi, L., Crooks, N.: Basil: breaking up BFT with acid (transactions). In: Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 1–17 (2021)

    Google Scholar 

  41. Vonlanthen, Y.: Cascadeth (2021). https://github.com/yannvon/cascadeth

  42. Vonlanthen, Y.: Multishot (2021). https://github.com/yannvon/aposteriori

  43. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: BFT consensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, pp. 347–356 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Vonlanthen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sliwinski, J., Vonlanthen, Y., Wattenhofer, R. (2022). Consensus on Demand. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2022. Lecture Notes in Computer Science, vol 13751. Springer, Cham. https://doi.org/10.1007/978-3-031-21017-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21017-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21016-7

  • Online ISBN: 978-3-031-21017-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics