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Abstract. In this paper, we study the treasure hunt problem in a graph
by a mobile agent. The nodes in the graphG = (V,E) are anonymous and
the edges incident to a vertex v ∈ V whose degree is deg(v) are labeled
arbitrarily as 0, 1, . . . , deg(v) − 1. At a node t in G a stationary object,
called treasure is located. The mobile agent that is initially located at a
node s in G, the starting point of the agent, must find the treasure by
reaching the node t. The distance from s to t is D. The time required to
find the treasure is the total number of edges the agent visits before it
finds the treasure. The agent does not have any prior knowledge about
the graph or the position of the treasure. An oracle, that knows the
graph, the initial position of the agent, and the position of the treasure,
places some pebbles on the nodes, at most one per node, of the graph to
guide the agent towards the treasure.
This paper aims to study the trade-off between the number of pebbles
provided and the time required to find the treasure. To be specific, we
aim to answer the following question:

– “What is the minimum time for treasure hunt in a graph with max-
imum degree ∆ and diameter D if k pebbles are placed? ”

We answer the above question when k < D or k = cD for some positive
integer c. We design efficient algorithms for the agent for different values
of k. We also propose an almost matching lower bound result for k < D.
Keywords: Treasure Hunt, Mobile Agent, Anonymous Graph, Pebbles,
Deterministic Algorithms

1 Introduction

1.1 Background and Motivation

Treasure hunt problem is well studied in varying underlying topologies such as
graphs and planes [2,3,7,11,12,14,15,16]. In this paper, we have delved into the
treasure hunt problem using mobile agents on graphs. The main idea of this
problem is that the mobile agent starting from a position has to find a station-
ary object, called treasure, placed at some unknown location in the underlying
topology. There are many real-life applications to this problem. Consider a sce-
nario, where a miner is stuck inside a cave and needs immediate assistance. In
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network applications, consider a network containing a virus, the agent in this
case is a software agent whose task is to find the virus located in some un-
known location inside the network. For any graph with maximum degree ∆. The
agent can find the treasure, located D distance away by performing a simple
breadth-first search (BFS) technique in O(∆D) time. But this is naive strategy
is expensive as many real-life problems require a much more efficient solution.
Suppose a person is stuck inside a building that has caught fire. He needs to
find the fire exit and then evacuate within a short period of time. These kinds
of emergencies require a faster solution. The person needs external help guiding
him toward the fire exit. Similar to that finding the treasure, the agent needs
some external help to guide the agent toward the treasure. That help is provided
to the mobile agent by the oracle. The external information provided by the or-
acle is in the form of pebbles placed at the graph’s vertices (nodes) [11], also
termed as advice. This advice guides the agent towards the treasure. The pebbles
are placed at the nodes, so the agent visiting the nodes gain some knowledge
and find the treasure using that information. The oracle places pebbles, at most
one at a node, by knowing the underlying graph topology, initial position of the
agent, and treasure’s location. Recently studied in the paper by Gorain et al.
[11] the treasure hunt problem in anonymous graph. They studied the question,
what is the fastest treasure hunt algorithm regardless of any number of pebbles
placed. In that paper, they obtained a faster algorithm that finds the treasure,
regardless of the number of pebbles placed. So, now a natural question arises
which they did not address. Given k many pebbles, what is the fastest possible
treasure hunt algorithm.

In this paper, we find the solution of the question: Given k pebbles what is
the fastest algorithm which solves treasure hunt problem in anonymous graph.

1.2 Model and Problem Definition

Search domain by the agent for finding the treasure is considered as a sim-
ple undirected connected graph G = (V,E) having n = |V | vertices which are
anonymous, i.e., they are unlabeled. The vertices are also termed as nodes in
this paper. An edge e = (u, v) must have two port numbers one adjacent to u,
which is termed as outgoing port from u and the other adjacent to v, termed as
incoming port of v (refer the edge (vi, vi+1) in Fig. 3, where ρ4 is the outgoing
port from vi and ρ0 is the incoming port of vi+1). ∆ is denoted as the maximum
degree of the graph. Initially, the agent only knows the degree of the initial node.
A node u ∈ V with deg(u) is connected with its neighbors, u0, u1, · · · , u{deg(u)−1}
via port numbers which have arbitrary but fixed labelings ρ0, ρ1, · · · , ρdeg(u)−1,
respectively. Agent visiting a node can read the port numbers when entering and
leaving a node, as stated in the paper [4]. Moreover, when the agent reaches a
node v from a node u, it learns the outgoing port from u and the incoming port
at v, through which it reaches v. The first half of u’s neighbors are the nodes
corresponding to the outgoing port numbers ρ0, ρ1, · · · , ρ deg(u)

2 −1, whereas the

second half of u’s neighbors are the nodes corresponding to the outgoing port
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numbers ρ deg(u)
2

, · · · , ρdeg(u)−1. The agent is initially placed at a node s. The

treasure t is located on a node of G at a distance D from s, which is unknown
to the agent. The oracle places the pebbles at the nodes of the graph G, in order
to guide the agent towards the treasure. At most one pebble is placed at a node.
The agent has no prior knowledge about the underlying topology nor it has any
knowledge about the position of treasure, pebble positions as well as the number
of pebbles deployed by the oracle. The agent has no knowledge about the value
of D as well. The agent can only find the treasure or pebble whenever it reaches
the node containing the treasure or pebble. Distance is considered as the num-
ber of edge traversal. We denote the shortest distance between any two nodes
by dist, i.e., between nodes u, v ∈ G as dist(u, v), hence dist(s, t) = D. Moreover
the agent has unbounded memory. The time of treasure hunt is defined as the
number of edge traversed by the agent from its initial position until it finds the
treasure.

1.3 Contribution

We study the trade-off between the number of pebbles provided by the oracle
and the associated time required to find the treasure. The contributions in this
paper is mentioned below.

– For k < D
2 pebbles, we propose an algorithm that finds the treasure in a

graph at time O(D∆
D

(2η+1) ), where η = k
3 .

– For D
2 ≤ k < D, we propose a treasure hunt algorithm with time complexity

O(k∆
D
k+1 ).

– In case of bipartite graphs, the proposed algorithm for treasure hunt has
time complexity O(k∆

D
k ) for 0 ≤ k < D.

– For k = cD where c is any positive integer, we give an algorithm that finds

the treasure in time O
[
cD( ∆

2c/2
)
2

+ cD
]

– We propose a lower bound result Ω((ke )
k
k+1 (∆− 1)

D
k+1 ) on time of treasure

hunt for 0 ≤ k < D.

1.4 Related Work

Several works have been done on searching for a target by one or many mobile
agents under varied underlying environments. The underlying environment can
be a graph or a plane, also the search algorithm can be deterministic or random-
ized. The paradigm of algorithm with advice was mainly studied for networks,
where this advice (or information) enhances the efficiency of the solutions in
[6,8,9]. In the past few decades, the problem of treasure hunt has been explored
in many papers, some of them are [3,12,15]. The book by Alpern et al. [1] pro-
vides a brief survey about searching and rendezvous problem, for an inert target,
where the target and the agent are both dynamic in nature and they cooper-
ate among themselves to meet. This book mostly deals with randomized search
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algorithms. The treasure hunt problem is mainly studied in a continuous and
discrete model. Bouchard et al. [3] studied the problem of treasure hunt in the
Euclidean plane, where they showed an optimal bound of O(D) with angular
hints at most π. Pelc et al. [16] provided a trade-off between time and informa-
tion of solving the treasure hunt problem in the plane. They showed optimal and
almost optimal results for different ranges of vision radius. Pelc et al. [15] gave
an insight into the amount of information required to solve the treasure hunt in
geometric terrain at O(L)- time, where L is the shortest path of the treasure
from the initial point. Further Pelc [14] investigated the treasure hunt prob-
lem in a plane with no advice for both static and dynamic cases. Spieser et al.
[17] studied the problem, where multiple self-interested mobile agents compete
among themselves to capture a target distributed in a ring, they have minimal
sensing capability and limited knowledge of where the target is positioned. In
[12], studies the amount of information available to the agent at priori and the
time of rendezvous and treasure hunt problems in graph is studied. Moreover,
Dieudonné et al. [5] explored the problem of rendezvous in a plane, where the ad-
versary controls the speed of the agent. Georgiou et al. [10] studied the treasure
evacuation problem in unit disk with a single robot. Gorain et al. [11] studied
the treasure hunt problem in the graphs with pebbles and also provided a lower
bound of the run time complexity using any number of pebbles. Our problem is
a more generalized version of the paper by Gorain et al. [11], where they have
used an infinite number of pebbles to give an almost optimal algorithm with
time O(D log∆ + log3∆). This paper tries to find an efficient algorithm for a
given number of pebbles.

The rest of the paper is organized as follows. In section 2, given k < D
pebbles, we provide treasure hunt algorithm and its analysis for a general graph.
Further, in section 3, given k ≥ D we propose the treasure hunt algorithm for a
general graph. In section 4, we have given the lower bound for the case k < D.
Finally, concluded in section 5.

In the following sections, we propose different algorithms for different graph
topology and their analysis.

2 Treasure Hunt Algorithm when k < D

In this section, we provide algorithms and their analysis for the case when the
number of pebble k is less than D. We first give an idea for tree topology and
then extend our idea for the bipartite graph. Then further modify our idea for
the general graph, with the introduction of a new paradigm termed as markers.

Idea of the pebble placement and algorithm in a tree network: Let T
be a rooted tree with root s and a node that is i distance from s is located at
the level Li of T . As the treasure t is located D distance away from s, hence t
is residing at some node at level LD. Consider the shortest path (P ) from s to
t is P = v0, v1, · · · , vD.
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Without Pebble: Consider the scenario, when there are no pebble placed in
the underlying tree topology by the oracle. To find the treasure starting from s,
the agent obeys a simple strategy. It naively searches all its neighbors and further
down the level, i.e., its children, grandchildren and so on until the treasure is
encountered. Now in the worst case, each node may have degree ∆, hence the
time of finding the treasure can be as worst as O(∆D). To overcome this high
time complexity, let us analyze how the placement of pebbles by the oracle helps
in efficiently reaching the treasure.
With Pebble: Suppose the oracle places only a single pebble at a node in the
first level L1. In this case, after searching at most ∆ neighbors of s, the agent
will find a pebble at a node v1 (say) at the level L1, from which it further
searches only the subtree rooted at v1. This reduces the time to O(∆D−1). Now,
if the pebble is placed at a node in the level Li then the time of finding the
treasure is O(∆D−i). So, it is simple to observe that this time is minimum

when i = D
2 . In this case, the treasure can be found at time O(∆

D
2 ) which is

a significant improvement from O(∆D) after introducing a single pebble in an
appropriate level. Further with the introduction of two pebbles and placing them
at D

3 distance apart from each other, i.e., at a node in the levels LD
3

and L 2D
3

,

respectively. The time taken to find the treasure further reduces to O(∆
D
3 ). So,

if the oracle places k pebbles, D
k+1 distance apart along the path P . The treasure

can be found in time O(∆
D
k+1 ).

But the aforementioned naive idea cannot be directly applied to general
graphs. As the nodes in the graph are anonymous, i.e., there is no id for the
nodes. The agent can’t distinguish between a node that is visited or not. So,
there is an issue to deal with:

– Suppose the agent is currently searching from some node containing a pebble
at level Li, then how to determine the fact that the pebble found is at level
Lj , where i < j but not j < i or j = i.

Hence if these two issues are not resolved then in the worst case the agent
may move inside a cycle for infinite time. So, in the next two sections, we deal
with the issues related to the general graph. We provide algorithms and their
analysis for the agent to find treasure when D

2 ≤ k < D and k < D
2 .

2.1 D
2

≤ k < D

In this case, if the oracle places a pebble along the path P at alternative levels,
i.e., at the nodes vj , where 1 ≤ j ≤ D and j is even. The agent searches every
possible path of length D

k+1 (=l) until a pebble or the treasure is encountered
from SearchNode. The length of the path between two pebbles, in this case, is at
most 2, as k ≥ D

2 . So, by searching a path of length at most 2 from SearchNode
(i.e., l ≤ 2), the agent cannot return to itself. The reason is, the graph G has no
multiple edges and self loops. Also, it cannot go to the previous SearchNode. It is
because suppose the SearchNode is at level Li, then all the incoming ports from
the level Li−1 to the SearchNode is already saved. Further, the agent cannot use
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these saved ports while searching a BFS of length l from SearchNode. Hence the
length of the path from Li to any node in Lk (where k < i) containing pebble is
at least l+ 1. So, both the issues of circling its way back to itself and going back
are restricted. Hence, the agent can only move forward along P and ultimately
finds the treasure. The time taken to search all possible paths of length D

k+1 is

O(∆
D
k+1 ) and the searching is done from each of the k pebbles. Hence the total

time to find the treasure is at most O(k∆
D
k+1 ).

Now in the case of a general graph with D
2 ≤ k < D pebbles, the placement of

pebbles at alternate levels ensures that there is no returning back and as well as
going back to the SearchNode. But this fact is not valid for general graphs, when
k < D

2 pebbles are provided. This is explained with the help of the following
example.

Example: Consider the example in Fig. 1, where the SearchNode is v3 and l = 3.
The correct path from v3 to the treasure is along v3 −→ v4 −→ v5 · · · vj · · · −→ t.
But when it performs a BFS of length l from SearchNode. It will not be possible
for the agent to distinguish between the paths v3 −→ v4 −→ v5 −→ v6 and
v3 −→ u4 −→ u5 −→ v3. In both the cases after traversing a dist of l from v3,
the agent encounters a pebble. In the worst case, the agent may traverse this
wrong path each time and never reach the treasure. Moreover, the number of
pebbles must be at least 2, as with a single pebble it is not possible for the agent
to find the treasure. Consider the Fig. 1, where a pebble is placed at only v3.
In this case, the agent may never find treasure. It is because, at every search
from v3, the agent may circle its way back to v3 (as the nodes and pebbles are
anonymous) rather than encountering the treasure.

s = v0

vj

t = vD

v1

v3

v4

v6

v5

u4

u5

v2

Fig. 1: Impossibility case in General
Graph

s = v0

t = vD

A node with Pebble

A node without Pebble

vl−1
vl

v2l

v3l
v3l+1

Marker-1

Marker-2

Group-1

Fig. 2: Pebble Placement in General
Graph with Multiple Marker
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Marker: To deal with this scenario we create a notion of markers. The idea
of markers came from the concept of colors. Colors are always helpful in distin-
guishing certain characteristics. In our case it helps to identify whether a node is
already visited. As there is no concept of using colors in our model. We replicate
the idea of colors by using certain combination of pebbles, this combination is
termed as Marker. To denote a marker, the oracle places two pebbles adjacent to
each other along the path P . When the agent finds a pebble placed in one of the
adjacent nodes of the current pebble, it understands that it has found a marker.
We generalize our idea of finding treasure in general graphs with markers.

2.2 k < D
2

As discussed above, the introduction of a marker helps the agent distinguish
between visited and non-visited pebbles. In this section, we discuss how multiple
marker helps the agent to find the treasure in a general graph. The pebble
placement strategy is discussed as follows.

We define a group as a marker together with the immediate next pebble.
Markers and pebbles are placed alternatively as shown in Fig. 2. Let l be the
distance between a marker and a pebble in a group. Further two such groups are
also placed at l distance apart. We denote η to be the number of such groups.
We can differentiate the following cases:

– Case-1: (k = 3η) In this case, the oracle places the markers and the pebbles
l distance apart along the path P (refer Fig. 2), where l = D−η

2η+1 .

– Case-2: (k = 3η + 1) Similarly, in this case l = D−η
2η+2 .

– Case-3: (k = 3η + 2) Similarly, in this case as well, l = D−η−1
2η+2 .

Below is a detailed description of the algorithm TreasureHuntForGraph-
WithMarker that the agent executes to find the treasure.

1. The agent starting from s, sets SearchNode=s and performs a BFS in in-
creasing lexicographic order of outgoing port numbers until a treasure or
pebble is found.

2. If the treasure is found, the algorithm terminates.
3. If the treasure is not found and a pebble is found. Then the agent sets the

dist between s and this node containing the pebble as l − 1. Also consider
that the node containing the pebble is vl−1 at Ll−1-th level.

4. Further from vl−1, the agent performs two tasks.
(a) Firstly it searches the neighbors of vl−1, and finds another pebble at

the node vl in level Ll. Further, it stores the length of the path l from
SearchNode to vl and identifies a marker is found.

(b) Secondly it stores the incoming port number ρl−1 of the incoming edge
(vl−1, vl).

5. Reset SearchNode=vl.
6. The agent performs a BFS of length l from SearchNode until the treasure or

pebble is found.
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7. If the treasure is found, then the algorithm terminates.
8. If the treasure is not found and whenever a pebble is found, there are two

possibilities:
(a) Possibility-1: The agent has returned back to SearchNode as the under-

lying graph topology is a general graph.
(b) Possibility-2: The agent has encountered a new pebble along path P .
Now to understand which of these possibilities the agent has encountered.
The agent travels the stored sequence of a port number, in this case ρl of
length 1. If in this traversal marker is found, then the agent has encountered
possibility-1 and searches a different path, otherwise if the marker is not
found then it is possibility-2.

9. If the agent encounters possibility-2, i.e., it has found a pebble for the first
time at the node v2l in L2l-th level. The agent performs the following tasks.
(a) It stores the sequence of incoming port numbers of the shortest path

from vl−1 −→ SearchNode −→ v2l of length l + 1.
(b) Completes the BFS search at the L2l−1 level. Whenever there is another

pebble encounter. The agent stores the incoming port number of the
incoming edge of that node containing a pebble, i.e., the edge with the
node in level L2l−1 and v2l. Sets SearchNode=v2l−1

10. From SearchNode it performs a BFS of length l using the ports except for
the stored incoming ports until treasure or pebble is encountered.

11. If treasure encountered go to step 7.
12. If pebble encountered then perform only step 8. Further if Possibility - 2

arises. Then search the neighbor of current SearchNode (i.e., v3l).
13. If a pebble is found at one of its neighbor node v3l+1, then identify a

new marker is found and store the incoming port ρ3l of the incoming edge
(v3l, v3l+1). Then go to step 5.

14. Otherwise if no pebble is found then go to step 9.

Lemma 1. Given k < D
2 pebbles, the agent following TreasureHuntFor-

GraphWithMarker algorithm successfully finds the treasure in a general graph
with the help of multiple marker.

Proof. To prove the correctness of our algorithm, we first ensure that while
searching from SearchNode the agent always finds a new pebble, i.e., it does
not encounter an already visited pebble. Secondly, we ensure that the agent will
always find the same pebble at least once, by searching all possible paths of
length l from SearchNode. Finally, we ensure that the treasure is found, when
the agent searches all possible paths of length l from the node containing the
last pebble placed along the path P . They are resolved in the following manner.

– Circle back to current SearchNode: If the current SearchNode=vk is part of a
marker, then it stores the incoming port number ρk of the edge (vk, vk+1) (re-
fer step 4b of TreasureHuntForGraphWithMarker algorithm). Fur-
ther, it performs a BFS from vk+1, whenever a pebble is encountered, it
checks the node with port ρk (refer step 8 of TreasureHuntForGraph-
WithMarker algorithm) from the newly encountered pebble. If another
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pebble is found, i.e., a marker is found, then it concludes that the agent has
circle back to current SearchNode, i.e., vk. In this case, the agent cancels this
path and continues its search along different path (refer Possibility-1 in step
8a of TreasureHuntForGraphWithMarker algorithm).
Otherwise, if the current SearchNode=vk is not part of marker, then the
agent has a stored sequence of incoming port numbers of length jl+ 1 (refer
step 9 of TreasureHuntForGraphWithMarker algorithm), where j
is the number of pebbles along P from the last marker to the SearchNode.
So, the agent from SearchNode performs a BFS of length l. Whenever a
pebble is encountered. The agent traverses the already stored sequence of
port numbers to check whether it has reached the marker. If the marker is
reached, it concludes that the agent has circled its way back to SearchNode
and searches a different path. Otherwise, the agent has moved to the new
SearchNode. Hence the use of markers prevents the agent to circle its way
back to itself.

– Circle back to previous SearchNode: Let at some iteration of the algorithm,
current SearchNode is vi at level Li of the BFS tree. Then the pebble encoun-
tered while searching all possible paths of length l should be at level Lj , where
j > i. This is because, the length of the path from the last SearchNode to vi
is at least l+1. The reason being, the agent does not travel through the edges
adjacent to vi whose ports are saved (refer step 10 of TreasureHuntFor-
GraphWithMarker algorithm). This implies that the new search node is
always at Lj-th level, where j > i. So, this means that the agent cannot go
back to already visited pebbles.

– Guaranteed finding of pebble at length l from current SearchNode: The oracle
places the pebbles and markers l distance apart. So, the agent while searching
from SearchNode, all possible paths of length l, must encounter one pebble.

– Guaranteed finding of treasure at length l from k-th pebble: The node con-
taining the last pebble is chosen in such a manner by the oracle, such that
the dist between treasure and that node is at most l. So, the agent while
searching from SearchNode all paths of length l must find the treasure.

All points above guarantee that the agent successfully finds the treasure. ut

Theorem 1. The agent finds the treasure in O(D∆
D

(2η+1) ) time, where η = k
3 .

Proof. Starting from s, the agent performs a BFS and encounters a pebble at
distance l for the first time. Further, whenever the agent encounters either a
marker (combination of two pebbles) or a single pebble, it searches all possible
paths of length l. The time taken to search all paths of length l from a node
is O(∆l), where ∆ is the maximum degree of G. Whenever a single pebble is
encountered, the agent traverses the sequence of port numbers of length l + 1
(refer step 8 of TreasureHuntForGraphWithMarker algorithm). In the
worst case, the agent traverses a path of length l + 1 for each O(∆l) many
searches. So, the time taken is O((l + 1)∆l). The agent has to search more,
when the number of single pebble is η+ 1, i.e., l = D−η

2η+2 (refer pebble placement

strategy). By lemma 1, the agent successfully reaches the treasure. Hence the
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total time taken to find the treasure is O((η + 1)(l + 1)∆l) = O
(
D∆

D−η
2η+2

)
=

O
(
D∆

D
2η+1

)
, where η = k

3 . ut

In the following part, we provide a close to optimal treasure hunt algorithm
for a special class of graphs. We show that in bipartite graphs, treasure can be
found without the placement of markers, unlike in a general graph, where the
treasure hunt is not possible without markers. Let G be the bipartite graph.
Consider the BFS tree of G with root s, where a node u ∈ G which is i distance
from s is located at the level Li. As we know the length of the shortest path
from s to t is D. This implies t is some node at the level LD. Now according to
the previous strategy for trees, there are k possible nodes in G where the oracle
can place k pebbles, each at least D

k+1 dist apart from each other with respect to
the level. The objective of the oracle is to place the pebbles odd dist apart from
each other. Hence we describe the pebble placement strategy in the following
manner:

– If d D
k+1e (=l) is even, then place the j-th (where 1 ≤ j ≤ k) pebble at the

node vα+1 at level Lα+1 along the shortest path P , where α = d jDk+1e. The

j-th pebble is placed d D
k+1e+ 1 dist apart from (j − 1)-th pebble.

– Otherwise (d D
k+1e is odd) the j-th pebble (where 1 ≤ j ≤ k) is placed at the

node vα at level Lα along the shortest path P . In this case j-th pebble is
placed d D

k+1e dist apart from the (j − 1)-th pebble.

Below is a detailed description of the TreasureHuntForBipartiteGraph
algorithm to find the treasure by an agent.

1. Starting from s the agent sets SearchNode=s and performs a breadth first
search in lexicographically increasing order of outgoing port numbers until
a pebble or treasure is found.

2. If the treasure is found, the algorithm terminates.
3. If the treasure is not found and a pebble is found at the node vl in Ll-th

level, the agent performs two tasks.
(a) At first it stores the length of the path l from SearchNode to the node

containing the pebble.
(b) Then it completes its search at the Ll−1-th level in a breadth first search

technique. Whenever there is another encounter with the pebble, the
agent stores the incoming port number of the incoming edge of that
node containing the pebble.

4. Set SearchNode=vl.
5. From SearchNode, the agent again performs a breadth first search of length
l, ignoring the saved incoming port numbers, until the treasure or pebble
is encountered (As per the pebble placement strategy, the distance between
each pebble is l).
(a) If the treasure is found, go to step 2.
(b) If the treasure is not found and a pebble is found at the node v2l at level

L2l, then go to step 3.
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Now in the next two lemmas, we first prove the correctness of our algorithm
and further provide the complexity analysis.

Lemma 2. Given k < D
2 pebbles, the agent following TreasureHuntFor-

BipartiteGraph algorithm successfully finds the treasure in a bipartite graph.

Proof. To prove the correctness of our algorithm, we need to ensure all the facts
stated in lemma 1, are resolved in the case of a bipartite graph. We deal with
these issues in the following manner:

– The pebbles are placed odd distance (=l) apart. We know that bipartite
graphs cannot have odd cycles (see proof in [13]). So, the agent searching
from SearchNode a path of length l cannot return to itself.

– Let, at some iteration of the algorithm, current SearchNode=vi at level Li of
the BFS tree. Then the pebble encountered while searching all possible paths
of length l should be at level Lj , where j > i. This is because, the length of
the path from the last SearchNode to vi is at least l + 1. The reason being,
the agent does not travel through the edges adjacent to vi whose ports are
saved (refer step 5 of TreasureHuntForBipartiteGraph algorithm).
This implies that the new SearchNode is always at the Lj-th level, where
j > i. So, this means that the agent cannot go back to the already visited
pebbles.

– The oracle places the pebbles l distance apart. So, the agent while searching
from SearchNode, all possible paths of length l, must encounter one pebble.

– The node containing the last pebble is chosen in such a manner by the oracle,
such that the dist between treasure and that node is at most l. So, the agent
while searching from SearchNode all paths of length l must find the treasure.

All the above points guarantee that the agent successfully finds the treasure. ut

Theorem 2. Given k < D
2 , the agent finds the treasure in O(k∆

D
k ) time in a

bipartite graph.

Proof. The agent starting from s searches all possible paths of length l (refer
step 1 of TreasureHuntForBipartiteGraph algorithm). Now as the ora-
cle places the pebbles d D

k+1e (or d D
k+1e + 1) distance apart (refer the pebble

placement strategy), this implies the length of the path l is either d D
k+1e or

(d D
k+1e + 1). So, the time required to search all possible paths of length l in

worst case is asymptotically O(∆
D
k+1 ). Now from each pebble encountered, the

agent searches all possible paths of length l and then reaches the next peb-
ble along the path P . As the agent successfully reaches the treasure by lemma
2. Hence, this process goes on until the treasure is encountered (refer step 5
of TreasureHuntForBipartiteGraph algorithm). Now each such search of

paths of length l from k many pebbles takes O(∆
D
k+1 ) time. So, the total taken

to find treasure in a bipartite graph is O(k∆
D
k+1 ) = O(k∆

D
k ). ut
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3 Treasure Hunt Algorithm when k ≥ D

In this section, we explore the case when k = cD pebbles are provided by the
oracle, where c is any positive integer. We propose an algorithm that finds the

treasure in O
[
cD( ∆

2c/2
)
2

+ cD
]

time.

Let G be a graph with maximum degree ∆ ≥ 10(c + 1) + 6. 3. Let β =
10(c+ 1) + 6. The case where ∆ < β is dealt with a different strategy, and it is
explained ahead. The path P from s to t may have two scenarios:
Scenario-1: P may not contain any node of degree β which is similar to solving
the case in which G has maximum degree ∆ < β.
Scenario-2: P contains at least one node of degree β.

All these cases are dealt separately and are discussed ahead. In similar struc-
ture, before proceeding to general graphs we first provide a description of our
algorithm and pebble placement strategy in trees and then further extend our
idea for general graphs keeping in mind the additional difficulties faced in case
of general graph.

3.1 Idea of Treasure Hunt in Tree for k = cD Pebbles

Let G be a rooted tree, where initial node s is the root of the tree. The nodes
at the level Li are located at a distance i from s. The treasure t is located at
a distance D from s at the level LD. Let P = v0, v1, · · · , vD (where v0=s and
vD = t) be the shortest path from s to t.

If k = D pebbles are given, then the oracle places a pebble on each D many
nodes along P , i.e., one pebble is placed on each vi, where 0 ≤ i ≤ D − 1
and vi ∈ P . Now if more than D pebbles are provided, i.e., k > D. Then
along with placing D pebbles on each node vi, the oracle further places the
remaining pebbles along the children of vi’s. These remaining pebbles help the
agent to reduce its search domain to find the next node vi+1 along P (where
0 ≤ i ≤ D − 1). The agent from vi, obtains a binary string by visiting the
neighbors of vi along which some of the remaining k − D pebbles are placed.
This binary string gives the knowledge to the agent, of the collection of outgoing
ports along which the agent must search in order to encounter the pebble placed
at the node vi+1. In the following part, we discuss how a string is represented
with respect to the pebbles placed.
String Representation with Pebbles: Among the neighbors of vi which are
used for encoding a string: if the node contains a pebble it is termed as ‘1’ in the
j-th bit of the binary string, whereas no pebble represents ‘0’. Now there may be
a scenario, where all the neighbors are not used for encoding. In order to learn
where the encoding has ended, the following strategy is used [11]. Instead of a
simple binary representation we provide a transformed binary representation in
which we replace ‘1’ by ‘11’ and ‘0’ by ‘10’. This transformation ensures there is
no ‘00’ substring in the transformed binary string. As an example γ = 0010 will

3 The reason behind the limit of ∆ is explained in Remark 1
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be transformed to γt = 10101110. Hence when the agent finds two consecutive
‘0’s it learns that the encoding has ended. The whole process is explained with
the help of the following example.
Example: Given k = 2D pebbles, the example as shown in Fig. 3 explains
the execution the algorithm when the agent reaches the node vi ∈ P along
the incoming port ρ0. Let deg(vi) = 12 and the node vi+1 connected to vi
with the edge having outgoing port number ρi, where ρi ∈ {ρ1, · · · , ρ deg(vi)

2 −1}
(i.e., ρ4 to be exact). Then the pebbles for encoding are placed along the nodes
corresponding to the outgoing ports {ρ deg(vi)

2

, · · · , ρdeg(vi)−1}. The j-th bit of

the binary string is ‘1’ if the node corresponding to the outgoing port number
ρ
(
deg(vi)

2 +(j−1)) contains a pebble, otherwise, if no pebble is found then the j-th

bit is ‘0’. So, the agent currently at vi obtains the transformed binary string
γt = 11 (as the ‘00’ obtained stops the agent from further search) by searching
the nodes corresponding to the outgoing ports {ρ deg(vi)

2

, · · · , ρdeg(vi)−1}. Hence

the binary string is γ = 1. Now as the length of γ obtained is 1, it divides the

neighbor set of deg(vi)
2 in to 2|γ| (where |γ| = 1) partitions each of size at most

ddeg(vi)21+1 e = d 124 e = 3. Further, it searches the outgoing ports corresponding to
the 2nd partition (as 0 represents the 1st partition, whereas 1 represents the

second partition of deg(vi)
2 neighbors of vi) out of 21 partitions each consisting

exactly 3 ports. This means the agent searches only the nodes corresponding to
the outgoing ports ρ4, ρ5 and ρ6 and finds the node vi+1 containing a pebble via
the outgoing port ρ4.

vi

vi+1

Li

Li+1

ρ1

11 0

ρ0 ρ0 ρ0
ρ0ρ0

ρ0

ρ2

ρ0

0

ρ0

ρ3
ρ4
ρ5

ρ6

ρ7
ρ8
ρ10

ρ11

ρ0
ρ0 ρ0

ρ0

ρ9

Neighbors in the second half of vi

u1 u2

Neighbors in the first half of vi

Fig. 3: Represents the encoding in order to help the agent reach vi+1 from vi.
Pebbles are placed at the nodes u1 and u2 of the tree, to represent the trans-
formed binary string 11, which the agent obtains to search the nodes along a
collection of outgoing port numbers for a pebble. This string localises the search
along the nodes corresponding to the outgoing ports ρ3, ρ4 and ρ5. Finally ob-
tains a pebble at the node vi+1 corresponding to the outgoing port ρ4.

Now, this idea is simple for trees, but this exact idea will not work for any
arbitrary graph. So, we make necessary modifications and explain them in the
following section.
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3.2 Extending the idea for General Graphs

The above idea for trees cannot be directly extended to general graphs. It is
because, any tree can be transformed into a rooted tree, the root being s. In
which, the edges go from level Li to Li+1 (where i ≥ 0), creating an acyclic
structure. The reason being, in a tree there is a unique path between two nodes,
i.e., no two nodes have common children. Similarly, we can create a BFS tree of
any arbitrary graph rooted at s. But any arbitrary graph may contain cycles.
So, there may be edges going in between levels in the BFS tree as well. Now
recalling the pebble placement idea for trees. The encoding in the neighbors of
a node v does not affect the encoding in the neighbors of node u as there are
no common children. But this is not true for general graphs. The encoding done
for the node u can hamper the encoding for the node v. To resolve this issue,
we place the pebbles for encoding on high degree nodes that are not ‘close’. We
call these high degree nodes as fat nodes which are defined below. A node is fat
if its degree is at least β, where β = 10(c+ 1) + 6. Otherwise, the node is termed
as light.

Now we have the following cases and we deal with them separately:

– Case-1: Every node vi ∈ P , 0 ≤ i ≤ D − 1, is light.
– Case-2: There exists at least one node in P which is fat.

Case-1: In this case no encoding is needed. The oracle places a single pebble at
each level of the BFS tree along the path P . So, the agent starting from s, sets
SearchNode= s. If a pebble is found at s then it searches the neighbors having
a pebble along the outgoing port {ρ0, · · · , ρ deg(s)

2
}. Otherwise if no pebble is

found at s then it searches the neighbors having a pebble along the outgoing
ports {ρ deg(s)

2 +1
, · · · , ρdeg(s)−1}. Whenever the next pebble is found at a node

v1, it sets the SearchNode= v1. At each subsequent steps the agent visits all
the neighbors of the current SearchNode for a pebble, except the incoming port
which connects the current SearchNode to the previous SearchNode (i.e., except
the port ρ0 for the node vi in Fig. 3). This process will continue until the treasure
is found. Now, since all the nodes along P are light, hence their degree is less than
β. So, the time needed to find the treasure is at most βD, where β = 10(c+1)+6.
Case-2: In this case encoding is needed as all the nodes along the path P are not
light. The encoding is done on the children of a set of nodes termed as milestone.
The presence of each milestone helps the agent to localise the search domain for
the next few nodes from along the path P . To define the first milestone node,
we have the following cases in the BFS tree corresponding to G:

– Case-A: The node s is fat. This implies the first milestone is s.
– Case-B: The node s is light but the node v1 at level L1 is fat. This implies

the first milestone is v1.
– Case-C: The nodes s, v1, · · · , vj (where j ≥ 2) are light whereas the node
vj+1 at level Lj+1 is fat. This implies the first milestone is vj+1.

The subsequent milestones are defined recursively as follows. For i ≥ 1, let the
i-th milestone is in level Lj (where j ≥ 0). Then the (i + 1)-th milestone node
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should be at level Lk, where k − j ≥ 5, i.e., the distance between any two
milestone is at least 5. This distance is maintained to avoid having a common
neighbor between any two pair of milestones. Refer to the remark 1 for detailed
explanation. Since the agent has no knowledge about the underlying topology
hence it cannot distinguish between light or milestone nodes. The placement of
pebbles for encoding not only gives the binary representation but also determines
whether a node is a milestone node or a light node (refer CheckerForMile-
stone algorithm). The pebble placement strategy is discussed in the following
section.

Pebble Placement: There are two reasons for pebble placement. One is for
giving the direction to the treasure along P . The other is for encoding which
reduces the search domain for the next node along P . Pebbles are placed at every
node along the path P , except at a node which is 2 dist apart from a milestone
node. More precisely, if vi is a milestone node at level Li along P , then no pebble
is placed at the node vi+2 at level Li+2 along P (refer the node v2 in Fig. 4,
where s is the first milestone). The goal of the agent is to find the next node of
the path P where the pebble is located. In the worst case, the agent may have to
search all the neighbors. To reduce this search domain, encoding is incorporated.
So, encoding will be done only at the neighbors of the fat node. Now the question
is, which neighbors of the milestone are used for encoding. As the oracle knows
which neighbor of the milestone along P the pebble is placed, accordingly it
uses the other half of the neighbors to place the pebbles for encoding. As shown
in the Fig. 4, where s is a milestone and v1 is the next node along P and the
pebbles for encoding are placed along the other half of neighbors of s.

Strategy for Encoding: The number of available neighbors for encoding is deg(v)
2 ,

where considering v is a milestone. Out of cD pebbles, D number of pebbles are
placed along the path P . The remaining (c− 1)D pebbles are used for encoding.
The length of each encoding should be at most c − 1. To distinguish between
two separate encodings, the oracle leaves two consecutive neighbors without
pebble. To understand the termination of the encoding another three consecutive
neighbors are kept empty. To encode α many binary string, we need at least

α((c− 1) + 2) + 3 neighbors. So, the relation between deg(v) and α is deg(v)
2 ≥

α(c + 1) + 3. Further, we define the set R as the set of two outgoing port
numbers and all the incoming port numbers of the neighbors of the milestone
along which pebbles are placed corresponding to the nodes containing pebbles
from s. The cardinality of R is at most α(c − 1) + 3. The reason being, from
a milestone α binary strings are encoded, each having length at most (c − 1)
and a single pebble is placed along the desired path. As shown in Fig. 3 the set
R = {ρ4, ρ6, ρ0, ρ0, ρ0}, corresponding to the nodes vi+1, u1 and u2, respectively.

Below is a detailed description of the CheckerForMilestone algorithm,
for the agent to determine whether a node is a milestone or a marker.

1. The agent currently at a node v, starts checking the node along the outgoing
port ρ1.
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s

v1

v2

v3
v4

v5

U

Γ1|1

Γ2|0,Γ2|1,Γ2|z

Γ3|1,Γ3|z

R4|1,R4|0|Γ4|1
R5|1,R|0|Γ5|1

Γ2|1,Γ2|z

R4|1

R4|z,R5|z

Γ3|z

Γ+
4 |z

t

R4|z

u1 u2 u3 w1 w2

W

Γ2|0,Γ2|1,Γ2|z

Γ3|1,Γ3|z

Γ3|1,Γ3|z

Fig. 4: Directed graph representing the possible path traversal of agent from a
Fat Node

2. If a pebble is found, then it searches the next four consecutive neighbors,
i.e., the nodes with outgoing ports ρ2, ρ3, ρ4 and ρ5, respectively.

(a) If more than one pebble is found, then the agent concludes v is a mile-
stone and the encoding is done along the first half of its neighbors, except
the parent. It further concludes that the next node along P is present in
the other half of its neighbors.

(b) Otherwise, if a single pebble is found, corresponding to the nodes with
outgoing ports ρ1, ρ2, ρ3, ρ4 and ρ5, then the node having pebble is
the next node along P . It further checks the node with outgoing port
ρ deg(v)

2 +1
, if a pebble is found, then conclude that v is a milestone, oth-

erwise v is light.

3. Moreover if no pebble is found at the node with outgoing port ρ1, then the
agent checks the nodes with outgoing port ρ deg(v)

2
, ρ deg(v)

2 +1
, ρ deg(v)

2 +2
, ρ deg(v)

2 +3

and ρ deg(v)
2 +4

, respectively.

(a) If more than one pebble is found, then the agent concludes v is a mile-
stone and the encoding is done along the second half of its neighbors,
except the parent. It further concludes that the next node along P is
present in the other half of its neighbors.

(b) Otherwise, if a single pebble is found, corresponding to the nodes with
outgoing ports ρ deg(v)

2
, ρ deg(v)

2 +1
, ρ deg(v)

2 +2
, ρ deg(v)

2 +3
and ρ deg(v)

2 +4
, then

the node having pebble is the next node along P . Moreover, conclude
that the node v is light.

As shown in Fig. 4, we create a directed graph representation consisting of
all the possible paths that the agent can travel from a fat node s towards the
treasure t. The pebbles for encoding are placed along the neighbors of s. The set
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s

Γ1|1

v2 v2, wiΓ3|1 Γ3|z Γ3|1 Γ3|z
v3 v3, ui v3, ui, s v3, ui, s

Γ2|0 Γ2|0,Γ2|1,Γ2|z

v4

R4|1,R4|0|Γ4|1

R4|z R4|z

R4|z

v4, s s, ui v4, s ui, s v4, s ui, s

ui ui

R5|z R5|z

v5

Set

Set

Set

Set −→ Set SearchNode
z −→ Multiple Pebble
1 −→ Single Pebblev1

Set

Set

0 −→ No Pebble

ui

R5|z

R4|1,R4|0|Γ4|1
R4|1,R4|0|Γ4|1 R4|1,R4|0|Γ4|1

R5|1,R5|0|Γ5|1

R5|1,R5|0|Γ5|1
R5|1,R5|0|Γ5|1 R5|1,R5|0|Γ5|1

Fig. 5: Flow Chart representing all possible traversals from a fat node s

U is a collection of nodes {u1, · · · } which represent the nodes where pebbles are
placed for encoding. The set W is the collection of nodes {w1, w2, · · · }, which
are at the same level as v1 and no pebbles are placed on them. The nodes along
the desired path from s to t are depicted by circles, in which pebbles are placed
at every node, except at v2 (marked by a red circle) and t. Let Γi be the integer
value of the binary string γi (where 1 ≤ i ≤ α) encoded along the neighbors
of s. The edge (u, v) denoted by Γ |n implies that the agent after searching
some Γ partition of u’s neighbor, encountered n many pebbles. The edge (u, v)
denoted by R|n implies that the agent after searching the nodes corresponding
to the set R of u’s neighbor, encountered n many pebbles.The notation R|0|Γ
along an edge (u, v), represents the fact that the agent after searching the nodes
corresponding to the set R of u’s neighbor and encounters no pebble, further it
searches its Γ partition of neighbors and encounters n many pebbles. The red
cross on an edge denotes that it is a path in which the agent detects inconsistency
and stops further exploration along this path. The variable z in Fig. 4, represents
any integer value greater than 1.

Moreover, the Fig. 5 is a generalized version of Fig. 4. In this figure, all
possible locations where the agent can travel by using the strings γ1, · · · , γ5 are
explained.

Further, any search from a node defined in TreasureHuntForGraph al-
gorithm, is performed keeping in mind the fact that the agent does not search
along its parent port. As shown in Fig. 3 by the ρ0 from vi.

Below is a detailed description of the TreasureHuntForGraph algorithm
for the agent to find the treasure.

1. The agent starting from s, sets SearchNode=s checks for a pebble at s.
If no pebble is found at s, then it searches the first half of its neighbors,
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for a node with a pebble. If a pebble is found at s, then it performs the
CheckerForMilestone algorithm to check, whether the node is light or
a milestone.

2. If s is light, then it searches the second half of its neighbors until a treasure
or a pebble is encountered. If the treasure is found then the algorithm termi-
nates. Otherwise if a pebble is found at a node v1, then set SearchNode=v1.

3. If s is a milestone, then it decodes the α many binary strings by visiting the
second half of its neighbors (node ui’s in Fig. 3). It stores the set R and
performs the following task.
(a) The agent first obtains the binary strings γ1, · · · , γα from the trans-

formed binary strings. The length of each γj (1 ≤ j ≤ α) is at most c−1
2 ,

as length of the transformed binary string is at most c−1 (ref. to pebble
placement of section 3.2).

(b) Further from s, i.e., SearchNode. The agent divides the neighbors of s

into 2|γ1| partitions. Each partition consisting of deg(s)

2|γ1|
neighbors. Then

it searches Γ1-th partition, where Γ1 is the integer value of γ1. If the
treasure is found then the algorithm terminates. Otherwise a pebble is
found at a node v1 (say), set SearchNode= v1 (as shown by the edge
(s, v1) in Fig. 4 and in Fig. 5).

(c) From v1, i.e., SearchNode. The agent searches Γ2-th partition of neigh-

bors of v1 out of 2|γ2| partitions each consisting of at most deg(v1)

2|γ2|
neigh-

bors. There may be no pebble or at least one pebble found (refer the
edges (v1, v2), (v1, ui) and (v1, wi) in Fig. 4).
If at least one pebble encountered, it means that the agent encountered
pebbles placed at the nodes ui ∈ U which are at the same level as v1,
and are meant for encoding (refer the edges (v1, ui), where ui ∈ U in
Fig. 4 and the edges denoted by Γ2|1 in Fig. 5). The desired path from
v1 is towards v2 which is at the next level of v2, which has no pebble
(refer the edge (v1, v2) with red circle in Fig. 4). Further there are also
nodes wi ∈ W at the same as v1, which do not contain any pebbles as
well (refer the edge (v1, wi) in Fig. 4). Now, the agent is unable to deter-
mine among them which one is the ‘shortest’ path towards the treasure.
To determine this fact, the agent on visiting the nodes without pebbles
one at a time performs the following task. From each of these nodes,
the agent uses the string γ3 to search their respective Γ3 partition of its
neighbors and encounters at least one pebble. From each of these nodes
with pebbles, the agent further searches the nodes corresponding to the
set R. Now in this process, the agent may face some inconsistencies.
These inconsistencies will in turn help the agent reject the wrong paths,
i.e., along the pebbles with nodes (refer to the nodes wi in Fig. 4) at the
same level as v1 and ultimately guide it towards the desired path.
The detailed process is explained as follows.
So, irrespective of the number of nodes without pebbles is encountered
from v1 after searching Γ2 partition of its neighbors, the agent visits each
node without a pebble, one at a time by maintaining a stack. Then it
searches its Γ3 partition of its neighbors. If no pebble is encountered,
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then the agent returns to its parent. Otherwise, there can be a single or
multiple pebbles encountered (refer to the edges with notation Γ3|1 and
Γ3|z, respectively in Fig. 4).
If a single pebble is found, then there are multiple possibilities, as shown
by the edges denoted by Γ3|1 in the Fig. 5.
P1: The agent currently at some node wi ∈W , encounters a pebble at

a node in the previous level (refer the edge (wi, s) with notation Γ3|1
in Fig. 4).

P2: The agent currently at some node wi ∈W , encounters a pebble at
a node in the same level (refer the edge (wi, ui) with notation Γ3|1
in Fig. 4).

P3: The agent at the node v2, encounters a pebble at a node in the
next level of v2, i.e., at v3 (refer the edge (v2, v3) denoted by Γ 3|1
as shown in Fig. 4) which is indeed the desired path towards the
treasure.

If multiple pebbles are found, then we have further possibilities, as shown
by the edges denoted by Γ3|z in Fig. 5.
P1: The agent currently at some node wi ∈ W , encounters a pebble

at a node in the previous level, i.e., at s (refer the edge (wi, s) with
notation Γ3|z in Fig. 4) and all the remaining pebbles along the nodes
in the same level, i.e., along ui (refer the edge (wi, ui) with notation
Γ3|z in Fig. 4).

P2: The agent currently at some node wi ∈ W , encounters all the
pebbles at a node in the same level, i.e., along ui (refer the edge
(wi, ui) with notation Γ3|z in Fig. 4).

P3: The agent currently at v2, encounters a pebble at a node in the next
level, i.e., at v3 (refer the edge (v2, v3) as shown in Fig. 4) which is
indeed the desired path towards the treasure. The remaining along
the nodes in the previous level, as shown by the edge (v2, ui) with
notation Γ3|z in Fig. 4.

So, irrespective of the number of pebbles encountered, the agent visits
each one of them and searches the nodes corresponding to the ports in
the set R. If no pebble is encountered, then the agent is at v3. In this
case, the agent further searches the Γ4 partition of its neighbors and
encounters v4 (refer the edge (v3, v4) with notation R4|0|Γ4|1 in Fig. 4).
From v4, it further searches Γ5 partition of its neighbors and finds v5. It
sets SearchNode=v5.
If a single pebble is found then we have the following possibilities.
P1: If the agent is currently at some node in ui ∈ U , then the pebble

encountered is at the node s (refer the edge (ui, s) in Fig. 4).
P2: If the agent is at a node v3, then the pebble encountered is at the

node v4 (refer the edge (v3, v4) with notation R4|1 in Fig. 4) which
is the desired path.

In this case, the agent searches the nodes corresponding to the ports in
the set R, from the node where a single pebble is encountered. Then we
have further possibilities:
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P1: If no pebble is encountered, then the agent is at v4. In this case,
the agent further searches the Γ5 partition of its neighbors and en-
counters v5 (refer the edge (v4, v5) with notation R5|0|Γ5|1 in Fig.
4). It sets SearchNode=v5.

P2: If a single pebble is encountered (refer the edge (v4, v5) with nota-
tion R5|1 in Fig. 4), then this is the correct path, and the agent will
reach to the node v5, and set SearchNode=v5.

P3: If multiple pebbles are encountered, return to its parent (refer to
all the crossed edges denoted by R5|z in Fig. 4 and in Fig. 5).

If multiple pebbles are found along this search, then the agent returns to
its parent, as referred by the crossed red edges denoted by R4|z in Fig.
4 and in Fig. 5.
In each case, by rejecting every wrong path (refered as crossed red edges
in Fig. 5), the agent will ultimately return to the node v5 (refer all the
edges denoted as R5|1 and R5|0|Γ5|1 in Fig. 5) and set SearchNode=v5.

(d) Further from v5, i.e., SearchNode. The agent searches the Γ6 partition of
v5 and encounters a pebble at the node v6. Then it sets SearchNode=v6.
This process continues until SearchNode=vα

4. If SearchNode is light, search all its neighbor until a pebble or treasure is
encountered. If the treasure is found, then the algorithm terminates. If a
pebble is found at a node vj , set SearchNode=vj , where (j ≥ 2).

5. If SearchNode is a milestone, then it searches its corresponding half of neigh-
bors determined by the algorithm CheckerForMilestone, and then go
to step 2.

Remark 1. In this remark, the idea behind the value of β = 10(c + 1) + 6 is
discussed. See the step 3c of the TreasureHuntForGraph algorithm. Observe
that at least 5 binary strings are required to check that the agent is moving along
the desired path P from a milestone (refer the path s −→ v1 −→ v2 −→ v3 −→
v4 −→ v5 in Fig. 4). Otherwise the agent may circle inside a loop and never
reach the treasure (refer the path s −→ v1 −→ wi −→ s in Fig. 4). Hence the
value of α ≥ 5. As discussed in Pebble placement strategy, to encode α many
binary strings, we need at least 5(c+1)+3 neighbors in one half of the neighbors
of the milestone. As each milestone is a fat node, hence total the degree of a fat
node must be at least 2(5(c+ 1) + 3) = 10(c+ 1) + 6.

Lemma 3. Given k = cD pebbles, the agent following the TreasureHunt-
ForGraph algorithm successfully finds the treasure.

Proof. To prove the correctness of the algorithm, we first ensure that the agent
successfully moves from one milestone to another milestone along P . Secondly,
we ensure that the agent moves towards the treasure along the path P , from a
light node. Let us consider the SearchNode is s. We deal with the issues in the
following manner:
SearchNode is a milestone: Observe that there are two possible nodes along P

between two milestones, which may create a problem, i.e., these nodes may devi-
ate the agent towards a wrong direction (refer to the nodes v1 and v2 in Fig. 4).
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The reason being, these are the only nodes between two milestone along P those
may have more than one neighbors containing pebbles (refer the edges (v1, ui)
and (v2, ui) in Fig. 4). Now the strategy discussed in step 3c of Treasure-
HuntForGraph algorithm, ensures that the agent always reaches the node
v5 along the path P using the advice from 5 binary strings γ1, · · · , γ5. This in
turn implies that the agent successfully overcomes the two problematic nodes
and moves along the desired direction. Hence, the agent by following the above
algorithm successfully moves from one milestone node to another.

SearchNode is light: The agent searches all the neighbors of the SearchNode and
finds a single pebble. It moves to that node containing the pebble and updates
the SearchNode (refer step-2 of TreasureHuntForGraph algorithm).

Hence the above two explanations guarantee that the agent moves forward
following the algorithm and successfully reaches the node where the treasure is
residing. ut

Lemma 4. The agent following TreasureHuntForGraph algorithm takes

O
(
c( ∆

2
c
2

)
2

+ c
)

time to reach from a milestone to another milestone.

Proof. Consider s as the first milestone on P and the second milestone is a node
vα along P which is located at α distance from s (where α ≥ 5) along P . The
time taken by the agent to reach vα from s is explained in the following cases:

– s to v1: The agent starting from s, finds it a milestone, then obtains the
α many binary strings (refer step 3a in TreasureHuntForGraph algo-
rithm), by visiting at most α(c + 1) + 3 neighbors (refer pebble placement
strategy 3.2) in (α(c + 1) + 3) time. It further searches its Γ1 partition
consisting of at most ∆

2
c−1
2

neighbors and finds v1 (refer step 3b in Trea-

sureHuntForGraph algorithm) in O( ∆

2
c−1
2

) time. So, the total time taken

to reach v1 is O( ∆

2
c−1
2

+ α(c+ 1) + 3) = O( ∆
2
c
2

+ c).

– v1 to v5: The agent from v1, searches its Γ2 partition of neighbors in O( ∆
2
c
2

)

time. Now as no pebble is placed on v2 along P (refer pebble placement 3.2),
the agent reaches each node without pebble and searches its corresponding
Γ3 partition of neighbors (refer step 3c of TreasureHuntForGraph al-

gorithm) in O(( ∆
2
c
2

)
2
) time. Then from each pebble encountered it searches

the nodes corresponding to the set R (refer step 3c of TreasureHuntFor-

Graph algorithm). The time required to perform this search is O(c( ∆
2
c
2

)
2
).

Now, the agent after cancelling all the inconsistent paths (refer step 3c of
TreasureHuntForGraph algorithm) may either reach s or the node v4.
Further the agent searches the nodes corresponding to the set R from the
encountered pebble. If a single pebble is found, then that node correspond-
ing to the pebble encountered is v5. If no pebble is found, then it searches
Γ5 partition along its neighbor to finally reach v5 in O( ∆

2
c
2

+ c) time. So, the

total time taken by the agent to reach v5 from v1 is O(c( ∆
2
c
2

)
2

+ c)).
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– v5 to vα: The agent after reaching v5, searches its Γ6 partition of neigh-
bors and finds v6 in O( ∆

2
c
2

) time. The agent performs similar searches and

ultimately reaches vα. The total time taken is O( ∆
2
c
2

).

Hence, the total time taken to reach vα from s is O
(
c( ∆

2
c
2

)
2

+ c
)

. ut

Theorem 3. Given k = cD pebbles, the agent following the TreasureHunt-

ForGraph algorithm finds the treasure in O
[
cD( ∆

2c/2
)
2

+ cD
]

time.

Proof. By lemma 4, the agent takes O
(
c( ∆

2
c
2

)
2

+ c
)

time to reach from one

milestone to another, placed α distance apart. In the worst case, the agent may
find a milestone placed successively at a gap of α distance apart, from the last
milestone along the path P . Hence, the total time taken by the agent to reach

the treasure is O
[
cD( ∆

2c/2
)
2

+ cD
]
.

ut

4 Lower Bound

In this section, we provide a lower bound result on time of treasure hunt for the
case when the number of pebbles k is at most D − 1.

Let T be a complete tree with n nodes and of height D where the degree of
the root r and each internal node is ∆. There are ∆ · (∆ − 1)D−1 leaves in T .
Let p = ∆ · (∆− 1)D−1 and u1, . . . , up be the leaves of T in the lexicographical
ordering of the shortest path from the root r to the leaves. For 1 ≤ i ≤ p, we
construct an input Bi as follows. The tree T is taken as the input graph, r as
the starting point of the agent, and ui as the position of the treasure. Let B
be the set of all inputs Bi, 1 ≤ i ≤ p. Let A be any deterministic treasure
hunt algorithm executed by the mobile agent and let L be any pebble placement
algorithm for the set of instances B. We prove the following theorem.

Theorem 4. There exists a tree with maximum degree ∆ and diameter D such

that any deterministic algorithm must require Ω((ke )
k
k+1 (∆−1)

D
k+1 )-time for the

treasure hunt using at most k pebbles placed on the nodes of T .

Proof. We define a set W that contains distinct elements of T such that W =
{v ∈ T : L places a pebble on v for some instance Bi ∈B}. Let x be the cardi-
nality of W , where x ≤ n. The number of ways one can put k pebbles in x nodes
is
(
x
k

)
. So the number of different possible placements of pebbles can be at most(

x
k

)
. As we have p many instances in B, by Pigeonhole principle, there exists at

least one way of pebble placement which is used to find the treasure in at least
p

(xk)
many input instances from the set B. Let T be the time taken by A to find

the treasure. As the agent may need to look for the treasure on p

(xk)
many differ-

ent leaf nodes for some placements of pebbles, we can say T ≥ p

(xk)
. On the other
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hand, T ≥ x must hold for some instance in B. From these two inequalities, we
have, T ≥ max{x, p

(xk)
}. So, to find the least value of x and hence T , we need to

solve the equation x = p

(xk)
. Putting the value of p, we get, x

(
x
k

)
= ∆·(∆−1)D−1.

Using the inequality (xek )k ≥
(
x
k

)
, we have, xk+1ek

kk
≥ (∆ − 1)D. Finally, we get,

x ≥ (ke )
k
k+1 (∆− 1)

D
k+1 . Hence the theorem. ut

5 Conclusion

In this paper we study trade-off between number of pebbles k and time for
treasure hunt for k = cD, where c ≥ 1. For k < D, our propose upper bound
and lower bound on time of treasure hunt are close. For k = cD, we propose
an algorithm for treasure hunt. Therefore, proving a tight lower bound result
for both of the above cases is natural problem to solve in future. On the other
hand, as the previous result [11] proves that the fastest possible treasure hunt
algorithm can be achieved with O(D log∆) pebbles, it will be interesting to
investigate the case when k ∈ w(D) and k ∈ o(D log∆).

We propose algorithms which have close upper and lower bound, when k < D.
In future we will like to provide a more tighter lower bound. Further, when
k ≥ D, we have given only upper bound. A possible future work will be to
propose a lower bound for this proof.
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