Skip to main content

Detection of Hot Topics Using Multi-view Text Clustering

  • Conference paper
  • First Online:
Information Integration and Web Intelligence (iiWAS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13635))

Included in the following conference series:

  • 835 Accesses

Abstract

Clustering tweets aims to obtain topically coherent grouping of documents i.e. clusters of tweets that can be exploited for multiple applications such as topic detection, news extraction, etc. However, handling such data is considered challenging due to its noisy aspect, the lack of context and the length constraint on one hand, and the natural aspect of text regarding its different interpretations and representations on the other hand. In fact, a single representation model cannot capture the various aspects of text which leads to losing valuable information. Targeting these issues, we propose a multi-view tweets clustering method that exploits various representation models in order to improve the clustering results. The experimental results show that the proposed method enhances the clustering quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, S., Scheffer, T.: Multi-view clustering. ICDM 4, 19–26 (2004)

    Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)

    Google Scholar 

  4. Dilrukshi, I., De Zoysa, K., Caldera, A.: Twitter news classification using SVM. In: 2013 8th International Conference on Computer Science & Education, pp. 287–291. IEEE (2013)

    Google Scholar 

  5. Guo, Y.: Convex subspace representation learning from multi-view data. In: AAAI, vol. 1, p. 2 (2013)

    Google Scholar 

  6. Hachaj, T., Ogiela, M.R.: Clustering of trending topics in microblogging posts: a graph-based approach. Future Gener. Comput. Syst. 67, 297–304 (2017)

    Article  Google Scholar 

  7. Hussain, S.F., Mushtaq, M., Halim, Z.: Multi-view document clustering via ensemble method. J. Intell. Inf. Syst. 43(1), 81–99 (2014). https://doi.org/10.1007/s10844-014-0307-6

    Article  Google Scholar 

  8. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM (2007)

    Google Scholar 

  9. Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  10. Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 393–400 (2011)

    Google Scholar 

  11. Kumar, V., Minz, S.: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowl. Inf. Syst. 49(1), 1–59 (2016)

    Article  Google Scholar 

  12. Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–22. Citeseer (1999)

    Google Scholar 

  13. Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260. SIAM (2013)

    Google Scholar 

  14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  15. Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: AAAI, pp. 2408–2414 (2017)

    Google Scholar 

  16. Rangrej, A., Kulkarni, S., Tendulkar, A.V.: Comparative study of clustering techniques for short text documents. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 111–112. ACM (2011)

    Google Scholar 

  17. Rosa, K.D., Shah, R., Lin, B., Gershman, A., Frederking, R.: Topical clustering of tweets. In: Proceedings of the ACM SIGIR: SWSM 63 (2011)

    Google Scholar 

  18. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)

    Article  Google Scholar 

  19. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  20. Tsur, O., Littman, A., Rappoport, A.: Efficient clustering of short messages into general domains. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)

    Google Scholar 

  21. Vicient, C., Moreno, A.: Unsupervised topic discovery in micro-blogging networks. Expert Syst. Appl. 42(17–18), 6472–6485 (2015)

    Article  Google Scholar 

  22. Xie, X., Sun, S.: Multi-view clustering ensembles. In: Machine Learning and Cybernetics (ICMLC), 2013 International Conference on, vol. 1, pp. 51–56. IEEE (2013)

    Google Scholar 

  23. Xu, Z., Sun, S.: An algorithm on multi-view adaboost. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6443, pp. 355–362. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17537-4_44

    Chapter  Google Scholar 

  24. Zhao, W.X., et al.: Comparing twitter and traditional media using topic models. In: Clough, P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_34

    Chapter  Google Scholar 

  25. Zhao, X., Evans, N., Dugelay, J.L.: A subspace co-training framework for multi-view clustering. Pattern Recogn. Lett. 41, 73–82 (2014)

    Article  Google Scholar 

  26. Zhuang, F., Karypis, G., Ning, X., He, Q., Shi, Z.: Multi-view learning via probabilistic latent semantic analysis. Inf. Sci. 199, 20–30 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Fraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraj, M., Hajkacem, M.A.B., Essoussi, N. (2022). Detection of Hot Topics Using Multi-view Text Clustering. In: Pardede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Information Integration and Web Intelligence. iiWAS 2022. Lecture Notes in Computer Science, vol 13635. Springer, Cham. https://doi.org/10.1007/978-3-031-21047-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21047-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21046-4

  • Online ISBN: 978-3-031-21047-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics