Abstract
Clustering tweets aims to obtain topically coherent grouping of documents i.e. clusters of tweets that can be exploited for multiple applications such as topic detection, news extraction, etc. However, handling such data is considered challenging due to its noisy aspect, the lack of context and the length constraint on one hand, and the natural aspect of text regarding its different interpretations and representations on the other hand. In fact, a single representation model cannot capture the various aspects of text which leads to losing valuable information. Targeting these issues, we propose a multi-view tweets clustering method that exploits various representation models in order to improve the clustering results. The experimental results show that the proposed method enhances the clustering quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bickel, S., Scheffer, T.: Multi-view clustering. ICDM 4, 19–26 (2004)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100. ACM (1998)
Dilrukshi, I., De Zoysa, K., Caldera, A.: Twitter news classification using SVM. In: 2013 8th International Conference on Computer Science & Education, pp. 287–291. IEEE (2013)
Guo, Y.: Convex subspace representation learning from multi-view data. In: AAAI, vol. 1, p. 2 (2013)
Hachaj, T., Ogiela, M.R.: Clustering of trending topics in microblogging posts: a graph-based approach. Future Gener. Comput. Syst. 67, 297–304 (2017)
Hussain, S.F., Mushtaq, M., Halim, Z.: Multi-view document clustering via ensemble method. J. Intell. Inf. Syst. 43(1), 81–99 (2014). https://doi.org/10.1007/s10844-014-0307-6
Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM (2007)
Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
Kumar, A., Daumé, H.: A co-training approach for multi-view spectral clustering. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 393–400 (2011)
Kumar, V., Minz, S.: Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowl. Inf. Syst. 49(1), 1–59 (2016)
Larsen, B., Aone, C.: Fast and effective text mining using linear-time document clustering. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 16–22. Citeseer (1999)
Liu, J., Wang, C., Gao, J., Han, J.: Multi-view clustering via joint nonnegative matrix factorization. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260. SIAM (2013)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification with adaptive neighbours. In: AAAI, pp. 2408–2414 (2017)
Rangrej, A., Kulkarni, S., Tendulkar, A.V.: Comparative study of clustering techniques for short text documents. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp. 111–112. ACM (2011)
Rosa, K.D., Shah, R., Lin, B., Gershman, A., Frederking, R.: Topical clustering of tweets. In: Proceedings of the ACM SIGIR: SWSM 63 (2011)
Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
Tsur, O., Littman, A., Rappoport, A.: Efficient clustering of short messages into general domains. In: Seventh International AAAI Conference on Weblogs and Social Media (2013)
Vicient, C., Moreno, A.: Unsupervised topic discovery in micro-blogging networks. Expert Syst. Appl. 42(17–18), 6472–6485 (2015)
Xie, X., Sun, S.: Multi-view clustering ensembles. In: Machine Learning and Cybernetics (ICMLC), 2013 International Conference on, vol. 1, pp. 51–56. IEEE (2013)
Xu, Z., Sun, S.: An algorithm on multi-view adaboost. In: Wong, K.W., Mendis, B.S.U., Bouzerdoum, A. (eds.) ICONIP 2010. LNCS, vol. 6443, pp. 355–362. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17537-4_44
Zhao, W.X., et al.: Comparing twitter and traditional media using topic models. In: Clough, P., et al. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20161-5_34
Zhao, X., Evans, N., Dugelay, J.L.: A subspace co-training framework for multi-view clustering. Pattern Recogn. Lett. 41, 73–82 (2014)
Zhuang, F., Karypis, G., Ning, X., He, Q., Shi, Z.: Multi-view learning via probabilistic latent semantic analysis. Inf. Sci. 199, 20–30 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fraj, M., Hajkacem, M.A.B., Essoussi, N. (2022). Detection of Hot Topics Using Multi-view Text Clustering. In: Pardede, E., Delir Haghighi, P., Khalil, I., Kotsis, G. (eds) Information Integration and Web Intelligence. iiWAS 2022. Lecture Notes in Computer Science, vol 13635. Springer, Cham. https://doi.org/10.1007/978-3-031-21047-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-21047-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21046-4
Online ISBN: 978-3-031-21047-1
eBook Packages: Computer ScienceComputer Science (R0)