Skip to main content

GadenTools: A Toolkit for Testing and Simulating Robotic Olfaction Tasks with Jupyter Notebook Support

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 590))

Included in the following conference series:

Abstract

This work presents GadenTools, a toolkit designed to ease the development and integration of mobile robotic olfaction applications by enabling a convenient and user-friendly access to Gaden’s realistic gas dispersion simulations. It is based on an easy-to-use Python API, and includes an extensive tutorial developed with Jupyter Notebook and Google Colab technologies. A detailed set of examples illustrates aspects ranging from basic access to sensory data or the generation of ground-truth images, to the more advanced implementation of plume tracking algorithms, all in an online web-editor with no installation requirements. All the resources, including the source code, are made available in an online open repository.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://colab.research.google.com/drive/1Xj7rrsmeDa_dS3Ru_UIhhzlaifGH6GS4?usp=sharing.

  2. 2.

    https://github.com/MAPIRlab/GadenTools.

  3. 3.

    https://mapir.isa.uma.es/mapirwebsite/?p=1708.

  4. 4.

    https://github.com/jupyter/jupyter/wiki/Jupyter-kernels.

  5. 5.

    https://colab.research.google.com/.

References

  1. Cython. https://Cython.org/. Accessed 6 July 2022

  2. Asenov, M., Rutkauskas, M., Reid, D., Subr, K., Ramamoorthy, S.: Active localization of gas leaks using fluid simulation. IEEE Robot. Autom. Lett. 4(2), 1776–1783 (2019)

    Article  Google Scholar 

  3. Bourne, J.R., Goodell, M.N., He, X., Steiner, J.A., Leang, K.K.: Decentralized multi-agent information-theoretic control for target estimation and localization: finding gas leaks. Int. J. Robot. Res. 39(13), 1525–1548 (2020)

    Google Scholar 

  4. Choi, S.-I., Eom, T., Jeong, G.-M.: Gas classification using combined features based on a discriminant analysis for an electronic nose. J. Sens. 2016, 9634387 (2016)

    Article  Google Scholar 

  5. Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2, 143–169 (2002)

    Article  Google Scholar 

  6. Python Software Foundation. Python language reference, version 3.7.x. https://python.org/. Accessed 6 July 2022

  7. Gongora, A., Monroy, J., Gonzalez-Jimenez, J.: Joint estimation of gas & wind maps for fast-response applications. Appl. Math. Model. 87, 655–674 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hutchinson, M., Liu, C., Chen, W.H.: information-based search for an atmospheric release using a mobile robot: algorithm and experiments. IEEE Trans. Control Syst. Technol. 27, 1–15 (2018)

    Google Scholar 

  9. Kluyver, T., et al.: Jupyter notebooks: a publishing format for reproducible computational workflows. In: Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp. 87–90. IOS Press (2016)

    Google Scholar 

  10. Lewis, T., Bhaganagar, K.: A comprehensive review of plume source detection using unmanned vehicles for environmental sensing. Sci. Total Environ. 762, 144029–144029 (2021)

    Article  Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Lochmatter, T., Martinoli, A.: Tracking Odor Plumes in a Laminar Wind Field with Bio-inspired Algorithms. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 54, pp. 473–482. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00196-3_54

  13. Macedo, J., Marques, L., Costa, E.: A comparative study of bio-inspired odour source localisation strategies from the state-action perspective. Sensors. 19(10), 2231 (2019)

    Article  Google Scholar 

  14. Macedo, J., Marques, L., Costa, E.: Locating odour sources with geometric syntactic genetic programming. In: Castillo, P.A., Jiménez Laredo, J.L., Fernández de Vega, F. (eds.) EvoApplications 2020. LNCS, vol. 12104, pp. 212–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43722-0_14

    Chapter  Google Scholar 

  15. Monroy, J., Gonzalez-Jimenez, J.: Gas classification in motion: an experimental analysis. Sens. Actuat. B. Chem. 240, 1205–1215 (2017)

    Article  Google Scholar 

  16. Monroy, J., Hernandez-Bennetts, V., Fan, H., Lilienthal, A., Gonzalez-Jimenez, J.: GADEN: a 3d gas dispersion simulator for mobile robot olfaction in realistic environments. MDPI Sens. 17(7), 1–16 (2017)

    Google Scholar 

  17. Ojeda, P., Monroy, J., Gonzalez-Jimenez, J.: Information-driven gas source localization exploiting gas and wind local measurements for autonomous mobile robots. IEEE Robot. Autom. Lett. 6(2), 1320–1326 (2021)

    Article  Google Scholar 

  18. Ojeda,P., Monroy, J., Gonzalez-Jimenez, J.: VGR dataset: A CFD-based gas dispersion dataset for mobile robotic olfaction (2022). (to appear)

    Google Scholar 

  19. Quigley, M., et al.: ROS: an open-source robot operating system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) Workshop on Open Source Robotics, may 2009

    Google Scholar 

  20. Rohrich, R.F., Piardi, L., Lima, J.L., de Oliveira, A.S.: Bio-inspired distributed sensors to autonomous search of gas leak source. In: 2020 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6 (2020)

    Google Scholar 

  21. Ruiz-Sarmiento, J.-R., Baltanas, S.-F., Gonzalez-Jimenez, J.: Jupyter notebooks in undergraduate mobile robotics courses: educational tool and case study. Appl. Sci. 11(3), 917 (2021)

    Article  Google Scholar 

  22. Wada, Y., Trincavelli, M., Fukazawa, Y., Ishida, H.: Collecting a database for studying gas distribution mapping and gas source localization with mobile robots. In: The Abstracts of the International Conference on Advanced Mechatronics: Toward Evolutionary Fusion of IT and Mechatronics, ICAM 2010, vol. 5, pp. 183–188 (2010)

    Google Scholar 

  23. Waphare, S., Gharpure, D., Shaligram, A., Botre, B.: Implementation of 3-nose strategy in odor plume-tracking algorithm. In: 2010 International Conference on Signal Acquisition and Processing, pp. 337–341 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was funded by the research projects HOUNDBOT (P20_01302 and UMA20-FEDERJA-056), both funding by Andalusia Regional Government and the European Regional Development FundERDF and by the grant fpr the formation of pre-doctoral researchers in Andalusia (24653).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pepe Ojeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ojeda, P., Ruiz-Sarmiento, JR., Monroy, J., Gonzalez-Jimenez, J. (2023). GadenTools: A Toolkit for Testing and Simulating Robotic Olfaction Tasks with Jupyter Notebook Support. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21062-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21061-7

  • Online ISBN: 978-3-031-21062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics