
GadenTools: A Toolkit for Testing and
Simulating Robotic Olfaction Tasks With

Jupyter Notebook Support

Pepe Ojeda1, Jose-Raul Ruiz-Sarmiento1, Javier Monroy1 and Javier
Gonzalez-Jimenez1

Machine Perception and Intelligent Robotics Group (MAPIR-UMA). Malaga
Institute for Mechatronics Engineering & Cyber-Physical Systems (IMECH.UMA).

University of Malaga. SPAIN

Abstract. This work presents GadenTools, a toolkit designed to ease
the development and integration of mobile robotic olfaction applications
by enabling a convenient and user-friendly access to Gaden’s realistic
gas dispersion simulations. It is based on an easy-to-use Python API,
and includes an extensive tutorial developed with Jupyter Notebook and
Google Colab technologies. A detailed set of examples illustrates aspects
ranging from basic access to sensory data or the generation of ground-
truth images, to the more advanced implementation of plume tracking
algorithms, all in an online web-editor with no installation requirements.
All the resources, including the source code, are made available in an
online open repository.

Keywords: Robotic Olfaction, Gas Dispersion Simulation, Python, Jupyter
Notebook, Google Colaborative

1 Introduction

Mobile robot olfaction (MRO) is the field concerned with the integration and
application of the sense of smell into mobile robots. It is a widely multidis-
ciplinary research area, involving problems such as chemical sensing and clas-
sification [4,15], dispersion modeling [5,7], optimal sampling [8] or gas source
localization [10,17], among others.

There are many potential applications for autonomous, mobile robotic agents
with the ability to sense the presence of gases in an environment, e.g. locating
leaks in pipes, detecting dangerous substances, rescue missions, air quality moni-
toring, etc. As a result of these interesting prospects, the field of robotic olfaction
has steadily been gaining attention over the years, and is expected to continue
to do so as the available technology improves.

A key hurdle, preventing much research from reaching the degree of matu-
rity necessary for real-world deployment, is the lack of proper datasets and tools
in the field that can be used to conduct ground truth evaluations. Works deal-
ing with these concepts are crucial, and highly popular in other fields such as



2 Ojeda et al.

computer vision [11]. In MRO, though, performing experiments in real environ-
ments is frequently not possible, and there is a serious technological limitation
to obtaining ground truth information of the spatial distribution of gases in the
environment [22,16].

These reasons, alongside the fact that the robotic olfaction research commu-
nity is still small, make it so that not many resources (datasets, visualization
tools, etc.) are available to facilitate the research progress. We believe that cre-
ating these assets for robotic olfaction, along with the tools to make them easily
accessible to our peers, is a meaningful contribution to the field that can boost
advances, and specially will help newcomers get started on a subject that has
been, up to now, somewhat obscure.

In this work we present GadenTools, a toolkit to handle data from gas dis-
persion simulations that aims to push in that direction. It is shipped as an
easy-to-use Python [6] module, and includes an extensive tutorial1 developed
with the Jupyter Notebook [9] and Google Colab technologies. This notebook-
shaped tutorial was designed to illustrate both the basic interaction with the
GadenTools module’s API and some more advanced use cases of how to exploit
its capabilities to perform powerful visualizations, data analysis, and methods’
validations. For doing so, it takes advantage of the Jupyter notebooks ability
to combine the expressiveness of traditional explanations from textbooks (texts,
equations, figures, etc.), with the interaction capabilities of software applica-
tions and executable code with visible outputs [9,21]. As a result, GadenTools
allows for a fast prototyping and development of contents related to MRO. All
the resources, including the source code, are made available in an online open
repository2.

More specifically, GadenTools works with data from Gaden simulations.
Gaden [16] is a gas dispersion simulator specifically designed for mobile robotics
that relies on Computational Fluid Dynamics (CFD) data. Although it has been
widely used in MRO research already [20,3,17], we believe the somewhat steep
learning curve required to use it, alongside the requirement to install addi-
tional software (i.e. the Robotics Operating System, ROS ), might be making
researchers who would benefit from its use to decide against it. In this way,
GadenTools offers a clean and accessible entry to Gaden simulations, while re-
moving the need for other software dependencies.

2 On the Importance of Gas Dispersion Simulators and
Datasets

The phenomenon of gas dispersion is very complex, and developing techniques to
understand it and infer the state of the environment from sparse measurements
is a challenging task that requires extensive experimentation. This experimenta-
tion process is also non-trivial, as setting up repeatable, consistent experiments

1 https://colab.research.google.com/drive/1Xj7rrsmeDa dS3Ru UIhhzlaifGH6GS4?
usp=sharing

2 https://github.com/MAPIRlab/GadenTools

https://colab.research.google.com/drive/1Xj7rrsmeDa_dS3Ru_UIhhzlaifGH6GS4?usp=sharing
https://colab.research.google.com/drive/1Xj7rrsmeDa_dS3Ru_UIhhzlaifGH6GS4?usp=sharing
https://github.com/MAPIRlab/GadenTools


GadenTools 3

requires a way to control the airflow, temperature, source release rate, and many
other factors. As a result, real-world experiments are mostly limited to simple,
wind-tunnel-like environments [23,14].

Simulation is thus an essential tool for researchers, allowing them to perform
perfectly repeatable experiments in environments of certain complexity. While
simulations, no matter their precision, do not avoid real-world validation of the
robotic techniques, they are a key tool in the early stages of development and
testing.

However, because CFD simulations with state-of-the-art numerical solvers
are difficult to set up and offer no integration with robotics software, many re-
searchers end up opting for custom-made simulation tools that are more appro-
priate for robotic olfaction [2,13]. Since these tools are not commercial software
meant to be used by the non-expert public, even when they are available online
they are often difficult for new users to interact with and lack proper documen-
tation. This ends up leading to a situation where each research group uses their
own internal simulation tool, which is incompatible with those used by everyone
else and hampers the fair comparison between developments. And so, getting
started in the field of robotic olfaction requires learning how these complex tools
work, or implementing one’s own.

Monroy et al. attempted to solve this integration issue by implementing
Gaden, a gas dispersion simulator, under the umbrella of the well-known Robot
Operating System (ROS) [19]. This way, Gaden was developed as a ROS pack-
age [16], thus allowing any other ROS process to communicate with it through
topics and messages. However, while this undoubtedly makes access to the sim-
ulations more convenient for those researchers who use ROS to develop their
own software, it also makes the data inaccessible to those who do not. The tools
presented in this work intend to help bridge that gap, making the simulation
data easily accessible in multiple formats by directly querying an API through
standalone Python code.

Recently, the authors of this work also released the VGR Dataset [18], a large
repository of already computed simulations in complex environments, made pub-
lic online3. Figure 1 shows some snapshots of the CFD-generated airflows for two
different indoor environments (included in the dataset) that can be accessed with
GadenTools. This dataset was intended to eliminate the necessity for researchers
to design and create their own simulations, which is in itself a time-consuming
process that requires a degree of familiarity with the simulation tools and ad-
ditional knowledge of other fields (e.g. 3D modelling). Moreover, the data are
provided in different formats, including human-readable CSV files, enabling their
usage outside Gaden at the expense of developing a toolkit for managing them.

GadenTools aims to palliate this issue by reducing the barrier of entry to
the field of robotic olfaction, allowing researchers to focus on developing their
algorithms and techniques, rather than on implementing simulation tools and
designing testing environments.

3 https://mapir.isa.uma.es/mapirwebsite/?p=1708

https://mapir.isa.uma.es/mapirwebsite/?p=1708


4 Ojeda et al.

Fig. 1: Examples of airflows generated with CFD tools in two different environ-
ments. Having multiple inlets and outlets, as well as many obstacles, tends to
produce flows that are more complex than would be possible in a wind tunnel.

3 Technologies Employed

In this section, we will briefly discuss the choice of technologies used for the
implementation and deployment of the GadenTools Python’s module and inter-
active tutorial.

3.1 Python

The Python programming language [6] was chosen for this project due to multiple
reasons, one of the most prominent of which is that the main aim of the project
is being easily accessible to everyone, regardless of their previous experience on
the field or their technical skill. Python is a very popular language with an easy-
to-learn syntax and a great deal of existing learning resources and useful libraries
that help reduce the barrier of entry.

Another important reason why Python was a natural choice is that it is fully
compatible with ROS. While GadenTools does not need to directly interact
with the existing ROS implementation of Gaden (and, indeed, in its current
state it is meant to be used in its stead), keeping open the possibility for their
interaction makes it so that future updates to the GadenTools project may add
extra functionality and create a more user-friendly way to interact with Gaden,
while still leveraging the speed and stability of the existing C++ Gaden ROS
nodes.

A drawback of Python is that it is not appropriate for highly performant
code. While most of the operations carried out in GadenTools do not require
great speed, there are some types of queries (see the visualization examples in
section 4.2) that may be inconveniently slow when reading simulations of big size.



GadenTools 5

For this reason, the implementation of GadenTools uses Cython [1], an extension
of the Python language that is statically compiled and thus allows for greatly
optimized execution. Cython modules can be used from standard Python code
seamlessly, and users of the module do not need to modify their own program
in any way to account for this.

3.2 Jupyter Notebooks

The Jupyter Notebook technology [9] has become the de facto choice in the
scientific community for producing reproducible computational workflows. It is
of special relevance in this work since it permits us to build up an interactive
tutorial describing GadenTools and its usage. This type of resources are also
called computational stories or live documents. This minimizes the tool’s learning
curve and illustrates how to perform different robotic olfaction task with it.
Jupyter Notebook consists of three main components:

– Notebook. Text document (JSON-based) used to define the Jupyter note-
book itself. It consists of a list of text or code cells. Text cells contain
markdown-formatted text, which enables the inclusion of math formulas,
tables, lists, rich media (images, videos, audios), etc. If needed, HTML can
also be used. In its turn, code cells contain source code in the kernel lan-
guage that can be executed, being their output (text, plots, etc.) printed
below them.

– Web application. Web-based interactive development environment to cre-
ate, edit and run notebooks. It allows for the hosting of the notebooks in
a server in order to work with them, given that the application is also in-
stalled. Local installations are also possible using package managers such as
pip or Anaconda. The classic notebook interface evolved into JupyterLab,
which fixed different usability issues and expanded its scope.

– Kernel. Backend application in charge of interacting with the Jupyter ap-
plication by executing code cells and making readily available their output.
Although there exist kernels for more than 50 programming languages4, here
we resort to the IPython kernel, which executes Python code.

Instead of JupyterLab, we have relied on Google Colaboratory5 (Colab for
short) for implementing the tutorial. This application has some advantages for
the design of an illustrative notebook: it provides free cloud resources so the
tutorial can be executed in any browser with internet connection, it enables
IDE-like features like autocompletion, function declaration inspection from any
point of the notebook, a variables-watcher, etc., and other features like showing
a table of contents to the user. Using Google Colab, the user can launch the
tutorial in a non-writable fashion and play with it without making any local
installation. Morever, they could make a local copy (just of the tutorial) to
modify it according to their needs.

4 https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
5 https://colab.research.google.com/

https://github.com/jupyter/jupyter/wiki/Jupyter-kernels
https://colab.research.google.com/


6 Ojeda et al.

4 GadenTools

GadenTools can be seen as a set of tools containing two main components: a
Python module for managing datasets, and a Jupyter Notebook-based tutorial
for illustrating how to operate with it, which also serves as a starting point for
further developments. Next sections describe them in further detail.

4.1 The Python Module

In order to better understand the module’s functionalities, it is convenient to
first dive into the primitives it works with: data from Gaden simulations. The
result of one of these simulations comprises a series of files in an internal binary
format, which separately hold information about: i) the airflow vectors through
the environment, ii) the gas distribution, as well as iii) a CSV file that describes
the geometry of the 3D environment in which the simulation takes place. These
binary representations are intended to speed up both reading and writing the
simulation results, and to reduce their memory footprint, but regrettably they
also make it difficult to manually parse the files.

This is the most immediate problem solved by GadenTools, which imple-
ments the necessary steps to decode this information and make it easily accessi-
ble through simple programmatic queries. These queries have been designed to
be straightforwardly incorporated to Jupyter notebooks workflows. Moreover,
as commented, the implementation has been made efficient by leveraging the
advantages of Cython.

The module’s core is the Simulation class, which permits the user to instan-
tiate a simulation by just specifying the path to its files in the device file system.
Behind this instantiation is the reading of Gaden’s binary files and their parsing,
so the information they encode becomes accessible through the module’s API. A
Vector3 class is also provided, which in addition to basic arithmetical operations
with 3-dimensional vectors also supports some extra utility functions.

This way, the API permits the MRO user to get information like the current
gas concentration or the wind vector at a given location in a certain simulation
iteration (expressed in ppm and m/s, respectively). The API also offers the
option to query multiple positions at once. For example, one can extract the
gas concentration or wind data of 2D slices of the environment, formatted as
multidimensional arrays, with a single query. This functionality has multiple
applications (e.g. obtaining the ground truth of a concentration map to compare
to those generated by an algorithm that is being tested), but probably the most
notable is the option to visualize the extracted data as images. The next section
further explores this option.

Beyond the ability to manually query specific points of the simulation, as
shown earlier, GadenTools can also replicate the traditional behavior of the
ROS version of Gaden, playing back the simulation in real time. This is useful
when one wants to simulate a robotic agent that takes time to move through
the environment and must deal with the fact that gas dispersion is a time-
dependent phenomenon. When using this mode, new snapshots of gas dispersion



GadenTools 7

Fig. 2: Excerpt from the Jupyter Notebook tutorial that shows how to load sim-
ulation data and query for single-point measurements of the gas concentration
and the airflow vector.

Fig. 3: Illustration of GadenTools accessing the gas concentration and 3D wind
vector from a given Gaden simulation. By simply updating the robot position,
the API provides the desired measurements.

and airflow information are continually loaded in the background at the specified
rate without any further input from the user, and the API provides methods to
access the data that pertains to the currently active iteration, rather than to a
manually specified one. This functionality was designed to be Jupyter Notebook-
friendly, as discussed below.

The GadenTools module also contains a ”Utils” submodule, which includes
several auxiliary tools which are not strictly required for the core functionality
of the module. Besides the Vector3 class, which has already been discussed,
several functions are included to aid in the generation of visualizations, from
simply marking the environment’s obstacles in the generated images, to encoding
the airflow’s direction as colors. Section 4.2 explores the topic of generating
visualizations in more depth.

4.2 The Notebook Tutorial

The purpose of the Jupyter notebook within GadenTools is to interactively de-
scribe its functionalities while illustrating how to use it in different MRO use
cases. It starts by describing GadenTools and its API in a similar way as in Sec-
tion 4.1, but taking advantage of code cells to exemplify its usage. For example,
Figure 2 shows a code cell that illustrates how to create a Simulation object,
also using the API to query the ground-truth gas concentration and wind vec-
tor at a certain position and simulation iteration. We can see how the result



8 Ojeda et al.

of executing this cell code is reported just below. In the notebook, the access
to existing simulation data is made available through selected downloadable ex-
amples, but one can indeed opt for any other existing resource, including the
previously mentioned VGR dataset, or even newly created simulations with cus-
tom environments or source parameters.

Once the basic usage is covered, the tutorial guides the user through different
GadenTools use cases. It starts by presenting different ways to extract simulation
data as images. The ability to visually represent the ground truth data not only
helps to gain an insight into the patterns of gas dispersion, and so help guide
the development of new techniques and algorithms, but is also a convenient
tool when troubleshooting methods of source localization or concentration maps
creation that are not working correctly in a given scenario.

Fig. 4: (Top) Excerpt from the Jupyter Notebook tutorial that shows how to gen-
erate a heatmap image of gas concentration on a 2D slice of the environment.
In the notebook, a series of interactive sliders lets the user control multiple pa-
rameters regarding which information is sampled and how it is shown. (Bottom)
Example of gas concentration heatmaps for different iterations (40, 100, 300 and
500).



GadenTools 9

Fig. 5: Visualization of the airflow through the environment as a vector field,
generated from the ”2D map” method in the GadenTools API. The second and
third pictures correspond to different vertical slices of the same environment,
and show the variation of the geometry and airflow with height.

In the same way, Figure 3 shows images built upon the provided API with
an occupancy map of a house, and gas dispersion at different iterations. The
user can simulate a mobile robot (marked as a red point in the images) to
inspect said environment by sampling it to get gas concentration and wind vector
measurements at different locations. The notebook also challenges the user to
find the gas source by guessing its location, giving feedback on the accuracy of
their guess. Figure 4 shows a notebook excerpt with a cell code illustrating how
to create images with an horizontal slice of the gas concentration as a heatmap,
while Figure 5 does the same with the airflow’s vectors. In both cases, a minimal
GUI gives the user the possibility to set the value of relevant parameters, which
helps to gain insight into the simulation behavior.

Once these basic images are obtained, the notebook also exemplifies how to
apply simple image processing techniques to them in order to get additional
information. Concretely, it illustrates how to retrieve the boundaries of the gas
plume in order to know the area affected by the gas dispersion, for which bina-
rization and contour finding techniques are used. A second illustrative example
shows how to get concentration gradients to visualize how said concentration
changes over space. Figure 6 shows the resulting images after executing these
examples.

As discussed in Section 4.1, the API provides the required functionality to
play back a simulation in real time. This is also described in the notebook,
including an example of its usage to build a video of the gas dispersion at time
intervals of 0.5 seconds. This functionality is also included in the concluding
use case of the notebook: an implementation of the classic Surge-Cast source
localization algorithm [12] (see Figure 7). The Surge-Cast algorithm has the
robot move through the gas plume by alternating two movement patterns, an
upwind surge and a crosswind cast, according to whether it is currently sensing
gas or not. By tracking the plume in this way, the robot eventually reaches the
source.

This last use case is particularly illustrative of how a Jupyter notebook can be
used for the fast prototyping and validation of algorithms in general, and MRO



10 Ojeda et al.

Fig. 6: Examples of using image processing techniques to extract information
from the visualizations of the simulation data. The first image shows the contours
of the gas plume, while the second image shows the local concentration gradients.

Fig. 7: An example of the proposed toolkit being used to implement an MRO
algorithm. Pictured here is the Surge-Cast source localization algorithm. Both
the algorithm implementation and the visualization are done fully in-notebook,
and the code is presented to help users develop their own methods.

techniques in particular. GadenTools users have the chance the opportunity to
continue editing and evolving the notebook according to their needs, or create
new notebooks using it, since as shown, the integration of the provided Ptyhon
module and Jupyter Notebook is straightforward.

5 Conclusions

This paper has presented the components of GadenTools, which pursue the
boosting of research in mobile robot olfaction. For doing so, it contributes an



GadenTools 11

esay-to-use Python module with a clean API that handles data from gas disper-
sion simulations. Specifically, the works with simulations produced by Gaden,
which include data about the environments where they were carried out (e.g.
layout and obstacles), as well as airflow and gas dispersion simulations. The
paper shows how these binary data, which previously required the installation
and configuration of different software dependencies for their manipulation, be-
comes easily accessible through the module’s API. GadenTools also includes a
Jupyter notebook, designed with Google Colab, that demonstrates the claimed
easy-to-use and accessibility features, and also illustrates a number of use cases
showing how it could be a powerful partner in the fast prototyping and valida-
tion of MRO techniques. GadenTools is an active project open to comments and
contributions from the MRO community.

Acknowledgements. This work was funded by the research projects HOUNDBOT
(P20 01302 and UMA20-FEDERJA-056), both funding by Andalusia Regional Gov-
ernment and the European Regional Development FundERDF and by the grant fpr
the formation of pre-doctoral researchers in Andalusia (24653).

References

1. Cython. Available Online: https://Cython.org/ (accessed 6 July 2022).
2. Martin Asenov, Marius Rutkauskas, Derryck Reid, Kartic Subr, and Subrama-

nian Ramamoorthy. Active localization of gas leaks using fluid simulation. IEEE
Robotics and Automation Letters, 4(2):1776–1783, 2019.

3. Joseph R Bourne, Matthew N Goodell, Xiang He, Jake A Steiner, and Kam K
Leang. Decentralized multi-agent information-theoretic control for target estima-
tion and localization: finding gas leaks. The International Journal of Robotics
Research, 39(13):1525–1548, 2020.

4. Sang-Il Choi, Taekyu Eom, and Gu-Min Jeong. Gas Classification Using Combined
Features Based on a Discriminant Analysis for an Electronic Nose. Journal of
Sensors, 2016:9634387, 2016-10-13.

5. Jay A. Farrell, John Murlis, Xuezhu Long, Wei Li, and Ring T. Cardé. Filament-
based atmospheric dispersion model to achieve short time-scale structure of odor
plumes. In Environmental Fluid Mechanics, volume 2, pages 143–169, 2002.

6. Python Software Foundation. Python language reference, version 3.7.x. Available
Online: https://python.org/ (accessed 6 July 2022).

7. Andres Gongora, Javier Monroy, and Javier Gonzalez-Jimenez. Joint estimation of
gas & wind maps for fast-response applications. Applied Mathematical Modelling,
2020.

8. Michael Hutchinson, Cunjia Liu, and Wen Hua Chen. Information-Based Search
for an Atmospheric Release Using a Mobile Robot: Algorithm and Experiments.
IEEE Transactions on Control Systems Technology, pages 1–15, 2018.

9. Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason
Grout, Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Will-
ing, and Jupyter development team. Jupyter notebooks: a publishing format for
reproducible computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents and Agendas, pages 87–90. IOS Press, 2016.

https://Cython.org/
https://python.org/


12 Ojeda et al.

10. Tyrell Lewis and Kiran Bhaganagar. A comprehensive review of plume source
detection using unmanned vehicles for environmental sensing. Science of the Total
Environment, 762:144029–144029, 2021.

11. Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects
in context. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 740–755. Springer International
Publishing, 2014.

12. Thomas Lochmatter and Alcherio Martinoli. Tracking odor plumes in a laminar
wind field with bio-inspired algorithms. In Oussama Khatib, Vijay Kumar, and
George J. Pappas, editors, Experimental Robotics, pages 473–482, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

13. João Macedo, Lino Marques, and Ernesto Costa. A comparative study of bio-
inspired odour source localisation strategies from the state-action perspective. Sen-
sors, 19(10), 2019.

14. João Macedo, Lino Marques, and Ernesto Costa. Locating odour sources with
geometric syntactic genetic programming. In Pedro A. Castillo, Juan Luis
Jiménez Laredo, and Francisco Fernández de Vega, editors, Applications of Evolu-
tionary Computation, pages 212–227. Springer International Publishing, 2020.

15. Javier Monroy and Javier Gonzalez-Jimenez. Gas classification in motion: An
experimental analysis. Sensors & Actuators: B. Chemical, 240:1205–1215, 2017.

16. Javier Monroy, Victor Hernandez-Bennetts, Han Fan, Achim Lilienthal, and Javier
Gonzalez-Jimenez. GADEN: A 3D gas dispersion simulator for mobile robot ol-
faction in realistic environments. MDPI Sensors, 17(7):1–16, 2017.

17. Pepe Ojeda, Javier Monroy, and Javier Gonzalez-Jimenez. Information-Driven
Gas Source Localization Exploiting Gas and Wind Local Measurements for Au-
tonomous Mobile Robots. IEEE Robotics and Automation Letters, 6(2):1320–1326,
2021.

18. Pepe Ojeda, Javier Monroy, and Javier Gonzalez-Jimenez. VGR dataset: A CFD-
based gas dispersion dataset for mobile robotic olfaction. 2022 - To appear.

19. Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating
system. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Robotics, may 2009.

20. Ronnier Frates Rohrich, Luis Piardi, José Luis Lima, and André Schneider de
Oliveira. Bio-inspired distributed sensors to autonomous search of gas leak source.
In 2020 International Conference on Manipulation, Automation and Robotics at
Small Scales (MARSS), pages 1–6, 2020.

21. Jose-Raul Ruiz-Sarmiento, Samuel-Felipe Baltanas, and Javier Gonzalez-Jimenez.
Jupyter notebooks in undergraduate mobile robotics courses: Educational tool and
case study. Applied Sciences, 11(3):917, 2021.

22. Yuta Wada, Marco Trincavelli, Yuichiro Fukazawa, and Hiroshi Ishida. Collecting
a Database for Studying Gas Distribution Mapping and Gas Source Localization
with Mobile Robots. In The Abstracts of the International Conference on Advanced
Mechatronics : Toward Evolutionary Fusion of IT and Mechatronics : ICAM, vol-
ume 2010.5, pages 183–188, 2010.

23. S. Waphare, D. Gharpure, A. Shaligram, and B. Botre. Implementation of 3-nose
strategy in odor plume-tracking algorithm. In 2010 International Conference on
Signal Acquisition and Processing, pages 337–341, 2010.


	GadenTools: A Toolkit for Testing and Simulating Robotic Olfaction Tasks With Jupyter Notebook Support

