Skip to main content

Learning from the Past: Sequential Deep Learning for Gas Distribution Mapping

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 590))

Included in the following conference series:

  • 666 Accesses

Abstract

To better understand the dynamics in hazardous environments, gas distribution mapping aims to map the gas concentration levels of a specified area precisely. Sampling is typically carried out in a spatially sparse manner, either with a mobile robot or a sensor network and concentration values between known data points have to be interpolated. In this paper, we investigate sequential deep learning models that are able to map the gas distribution based on a multiple time step input from a sensor network. We propose a novel hybrid convolutional LSTM - transpose convolutional structure that we train with synthetic gas distribution data. Our results show that learning the spatial and temporal correlation of gas plume patterns outperforms a non-sequential neural network model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://scikit-image.org/docs/stable/auto_examples/transform/plot_rescale.html.

  2. 2.

    https://pytorch.org/.

  3. 3.

    https://www.pytorchlightning.ai/.

  4. 4.

    https://github.com/ndrplz/ConvLSTM_pytorch.

  5. 5.

    https://optuna.org/.

  6. 6.

    https://gitlab.com/smueller18/TDKernelDMVW.

References

  1. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  2. Dahl, R., Norouzi, M., Shlens, J.: Pixel recursive super resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5439–5448 (2017)

    Google Scholar 

  3. Winkler, N.P., Matsukura, H., Neumann, P.P., Schaffernicht, E., Ishida, H., Lilienthal, A.J.: Super-resolution for gas distribution mapping: convolutional encoder-decoder network. In: 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), pp. 1–3 (2022)

    Google Scholar 

  4. Lilienthal, A.J., Reggente, M., Trincavelli, M., Blanco, J.L., Gonzalez, J.: A statistical approach to gas distribution modelling with mobile robots - the Kernel DM+V algorithm. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, (St. Louis, MO, USA), pp. 570–576. IEEE (2009)

    Google Scholar 

  5. Gongora, A., Monroy, J., Gonzalez-Jimenez, J.: Joint estimation of gas and wind maps for fast-response applications. Appl. Math. Model. 87, 655–674 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Reggente, M., Lilienthal, A.J.: The 3d-kernel dm+ v/w algorithm: using wind information in three dimensional gas distribution modelling with a mobile robot. In: SENSORS, pp. 999–1004. IEEE (2010)

    Google Scholar 

  7. Asadi, S., Fan, H., Bennetts, V.H., Lilienthal, A.J.: Time-dependent gas distribution modelling. Robot. Auton. Syst. 96, 157–170 (2017)

    Article  Google Scholar 

  8. Stachniss, C., Plagemann, C., Lilienthal, A.J.: Learning gas distribution models using sparse Gaussian process mixtures. Auton. Robot. 26, 187–202 (2009). https://doi.org/10.1007/s10514-009-9111-5

    Article  Google Scholar 

  9. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 4, 313–332 (1990)

    Article  Google Scholar 

  10. Monroy, J., Hernandez-Bennetts, V., Fan, H., Lilienthal, A., Gonzalez-Jimenez, J.: Gaden: a 3d gas dispersion simulator for mobile robot olfaction in realistic environments. Sensors 17(7), 1479 (2017)

    Article  Google Scholar 

  11. Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2, 143–169 (2002). https://doi.org/10.1023/A:1016283702837

    Article  Google Scholar 

  12. Bilgera, C., Yamamoto, A., Sawano, M., Matsukura, H., Ishida, H.: Application of convolutional long short-term memory neural networks to signals collected from a sensor network for autonomous gas source localization in outdoor environments. Sensors 18, 4484 (2018)

    Article  Google Scholar 

  13. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://distill.pub/2017/feature-visualization

  14. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional lstm network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank SAF€RA for funding the project RASEM, https://www.bam.de/Content/EN/Projects/RASEM/rasem.html and JSPS (KAKENHI Grant Number 22H04952) for funding part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas P. Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Winkler, N.P. et al. (2023). Learning from the Past: Sequential Deep Learning for Gas Distribution Mapping. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21062-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21061-7

  • Online ISBN: 978-3-031-21062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics