Abstract
The growing market in Remotely Piloted Aircraft Systems (RPAS) and the need for cost-effective “Detect and Avoid (DAA)” systems are critical issues up to date towards enabling safe beyond visual line of sight (BVLOS) operations. In hopes of promoting earlier threat detection on DAA systems, we benchmark several object detection algorithms on multiple graphical processing units for the concrete DAA use case. Two state-of-the-art “real-time object detection” and “object detection” model sets are trained using our CENTINELA dataset, and their performances are compared for a wide range of configurations. Results demonstrate that one-stage architecture YOLO variants outperform ViT on all tested hardware in terms of mean average precision and inference speed despite their architecture complexity gap. Additional resources are available to the reader at https://github.com/fada-catec/detection-for-safe-rpas-operation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Graphical Research. Europe Commercial Drone Market Forecast 2027. Accessed 30 Aug 2022. https://www.graphicalresearch.com/industry-insights/1016/europe-commercial-drone-unmanned-aerial-vehicle-UAV-market
Fact.MR. Europe Drone Market Outlook (2022–2032). Accessed 30 Aug 2022. https://www.factmr.com/report/europe-drones-market
EASA. Civil drones (unmanned aircraft). Accessed 30 Aug 2022. https://www.easa.europa.eu/domains/civil-drones
Single European Sky ATM Research. European Drones Outlook Study. Accessed 30 Aug 2022. https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study 2016.pdf
Mariscal-Harana, J., et al.: Audio-based aircraft detection system for safe rpas bvlos operation. Electronics 9(12), 2076 (2020)
Arai, K., Kapoor, S.: Advances in computer vision. In: Conference Proceedings CVC, p. 104. Springer, Heidelberg (2019)
Cai, Y., et al.: YOLOv4-5D: an effective and efficient object detector for autonomous driving. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)
Jha, S., et al.: Real time object detection and tracking system for video surveillance system. Multimedia Tools Appl. 80(3), 3981–3996 (2021)
Ren, S., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28 (2015)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Zhu, X., et al.: TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In: 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2778–2788 (2021)
Lian, J., et al.: Small object detection in traffic scenes based on attention feature fusion. Sensors 21(9), 3031 (2021)
Liu, Z., et al.: HRDNet: high-resolution detection network for small objects. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)
Xia, G.S., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)
Sun, X., et al.: FAIR1M: a benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. ISPRS J. Photogram. Remote Sens. 184, 116–130 (2022)
Wang, Y., et al.: Remote sensing image super-resolution and object detection: Benchmark and state of the art. Expert Syst. Appl., 116793 (2022)
Papers with Code. A free and open resource with Machine Learning papers, code, datasets, methods and evaluation tables. Accessed 30 Aug 2022. https://paperswithcode.com
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. ArXiv preprint arXiv:2010.11929 (2020)
Wang, C-Y., Bochkovskiy, A., Liao, H.-Y.M.: Scaled yolov4: scaling cross stage partial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13029–13038 (2021)
Ultralytics. YOLOv5. Accessed 30 Aug 2022. https://github.com/ultralytics/yolov5
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Dai, X., et al.: Dynamic head: unifying object detection heads with attentions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7373–7382 (2021)
NVIDIA. Sistemas integrados NVIDIA para las máquinas autónomas de la próxima generación. Accessed 30 Aug 2022. https://www.nvidia.com/es-es/autonomous-machines/embedded-systems
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32 (2019)
Wong, K.Y.: ScaledYOLOv4. Accessed 30 Aug 2022. https://github.com/WongKinYiu/ScaledYOLOv4
Wong, K.Y.: PyTorch_DYOLOv4. Accessed 30 Aug 2022. https://github.com/WongKinYiu/PyTorchYOLOv4
Chen, K., et al.: MMDetection: open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155 (2019)
cocodataset. COCO API. Accessed 30 Aug 2022. https://github.com/cocodataset/cocoapi
Roblox. ImageLabel. Accessed 30 Aug 2022. https://developer.roblox.com/en-us/api-reference/class/ImageLabel
Lin, T.Y., et al.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
OpenMMLab. mmdetection. Accessed 30 Aug 2022. https://github.com/open-mmlab/mmdetection
Acknowledgements
This work has been partially supported by the OMICRON project, funded by the EU H2020 programme under grant agreement 955269, and CEL.IA, a Cervera Network for applied artificial intelligence, funded by the Spanish government through CDTI (CER-20211022).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alarcón, V., Santana, P., Ramos, F., Pérez-Grau, F.J., Viguria, A., Ollero, A. (2023). Benchmark on Real-Time Long-Range Aircraft Detection for Safe RPAS Operations. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-21062-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21061-7
Online ISBN: 978-3-031-21062-4
eBook Packages: EngineeringEngineering (R0)