Skip to main content

Artificial Stupidity in Robotics: Something Unwanted or Somehow Useful?

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 590))

Included in the following conference series:

  • 880 Accesses

Abstract

Artificial stupidity has been reported in multiple computer science applications. This phenomenon can appear in two ways: artificial stupidity by accident is the result of artificial intelligence failures, whereas artificial stupidity by design is an intended development with a purpose. However, these concepts have not been studied in the context of robotics. This paper analyzes artificial stupidity in robotics, searching to answer the question: “Is artificial stupidity something that we must avoid or, on the contrary, something that can be useful for us?” It addresses the definition of the artificial stupidity problem and analyzes some potential methods to solve it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Falk, M.: Artificial stupidity. Interdisc. Sci. Rev. 46(1–2), 36–52 (2021)

    Article  Google Scholar 

  2. Murphy, C.M., Koehler, G.J., Fogler, H.R.: Artificial stupidity. J. Portf. Manag. 23(2), 24 (1997)

    Article  Google Scholar 

  3. Rich, A.S., Gureckis, T.M.: Lessons for artificial intelligence from the study of natural stupidity. Nat. Mach. Intell. 1(4), 174–180 (2019)

    Article  Google Scholar 

  4. Umbrello, S., Yampolskiy, R.V.: Designing AI for explainability and verifiability: a value sensitive design approach to avoid artificial stupidity in autonomous vehicles. Int. J. Soc. Robot. 14(2), 313–322 (2022)

    Article  Google Scholar 

  5. Trazzi, M., Yampolskiy, R. V. : Building safer AGI by introducing artificial stupidity. arXiv preprint arXiv:1808.03644 (2018)

  6. Trazzi, M., Yampolskiy, R.V.: Artificial stupidity: data we need to make machines our equals. Patterns 1(2), 100021 (2020)

    Google Scholar 

  7. Lidén, L. : Artificial stupidity: the art of intentional mistakes. AI Game Program. wisdom 2, 41–48 (2003)

    Google Scholar 

  8. Lo, A.W.: Why artificial intelligence may not be as useful or as challenging as artificial stupidity (2019)

    Google Scholar 

  9. Wang, W., Siau, K.: Artificial intelligence, machine learning, automation, robotics, future of work and future of humanity: a review and research agenda. J. Database Manage. (JDM) 30(1), 61–79 (2019)

    Article  Google Scholar 

  10. Károly, A.I., Galambos, P., Kuti, J., Rudas, I.J.: Deep learning in robotics: survey on model structures and training strategies. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 266–279 (2020)

    Article  Google Scholar 

  11. Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based robotic grasping. Curr. Robot. Rep. 1(4), 239–249 (2020)

    Article  Google Scholar 

  12. Zhao, W., Queralta, J. P., Westerlund, T. : Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 737–744. IEEE (2020)

    Google Scholar 

  13. Fang, B., Jia, S., Guo, D., Xu, M., Wen, S., Sun, F.: Survey of imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl. 3(4), 362–369 (2019). https://doi.org/10.1007/s41315-019-00103-5

    Article  Google Scholar 

  14. Honig, S., Oron-Gilad, T.: Understanding and resolving failures in human-robot interaction: Literature review and model development. Front. Psychol. 9, 861 (2018)

    Article  Google Scholar 

  15. León Rivas, J. D.: Dynamic analysis of the alternating tripod gait of a hexapod robot with C-legs, Doctoral dissertation, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (2020)

    Google Scholar 

  16. Rossi, A., Dautenhahn, K., Koay, K. L., Walters, M.L.: How the timing and magnitude of robot errors influence peoples’ trust of robots in an emergency scenario. In: Social Robotics. ICSR 2017. LNCS, vol. 10652. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70022-9_5

  17. Tian, L., Oviatt, S.: A taxonomy of social errors in human-robot interaction. ACM Trans. Human-Robot Inter. (THRI) 10(2), 1–32 (2021)

    Article  Google Scholar 

  18. Washburn, A., Adeleye, A., An, T., Riek, L.D.: Robot errors in proximate HRI: how functionality framing affects perceived reliability and trust. ACM Trans. Human-Robot Inter. (THRI) 9(3), 1–21 (2020)

    Article  Google Scholar 

  19. Kim, S. K., Kirchner, E. A., Schloßmüller, L., Kirchner, F. : Errors in human-robot interactions and their effects on robot learning. Front. Robot. AI 131, 558531 (2020)

    Google Scholar 

  20. Evjemo, L.D., Gjerstad, T., Grøtli, E.I., Sziebig, G.: Trends in smart manufacturing: role of humans and industrial robots in smart factories. Curr. Robot. Rep. 1(2), 35–41 (2020)

    Article  Google Scholar 

  21. Matheson, E., Minto, R., Zampieri, E.G., Faccio, M., Rosati, G.: Human-robot collaboration in manufacturing applications: a review. Robotics 8(4), 100 (2019)

    Article  Google Scholar 

  22. Sherwani, F., Asad, M.M., Ibrahim, B.S.K.K.: Collaborative robots and industrial revolution 4.0 (IR 4.0). In: 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), pp. 1–5. IEEE (2020)

    Google Scholar 

  23. Li, P., Liu, X.: Common sensors in industrial robots: a review. J. Phys. Conf. Ser. 1267(1), 012036 (2019). IOP Publishing (2019)

    Google Scholar 

  24. De Pace, F., Manuri, F., Sanna, A., Fornaro, C.: A systematic review of augmented reality interfaces for collaborative industrial robots. Comput. Ind. Eng. 149, 106806 (2020)

    Article  Google Scholar 

  25. Gonzalez-Aguirre, J.A., et al.: Service robots: trends and technology. Appl. Sci. 11(22), 10702 (2021)

    Article  Google Scholar 

  26. Roldán, J.J., Peña-Tapia, E., Garcia-Aunon, P., Del Cerro, J., Barrientos, A.: Bringing adaptive and immersive interfaces to real-world multi-robot scenarios: application to surveillance and intervention in infrastructures. IEEE Access 7, 86319–86335 (2019)

    Article  Google Scholar 

  27. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Rob. Syst. 10(12), 399 (2013)

    Article  Google Scholar 

  28. Khamis, A., Hussein, A., Elmogy, A.: Multi-robot task allocation: a review of the state-of-the-art. Coop. Robots Sensor Netw. 2015, 31–51 (2015)

    Google Scholar 

  29. Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y. : Survey of robot 3D path planning algorithms. J. Control Sci. Eng. 2016, 7426913 (2016)

    Google Scholar 

  30. Rahman, Q.M., Corke, P., Dayoub, F.: Run-time monitoring of machine learning for robotic perception: a survey of emerging trends. IEEE Access 9, 20067–20075 (2021)

    Article  Google Scholar 

  31. Kroemer, O., Niekum, S., Konidaris, G.D.: A review of robot learning for manipulation: challenges, representations, and algorithms. J. Mach. Learn. Res. 22(1), 1395–1476 (2021)

    Google Scholar 

  32. Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: A survey. Neurocomputing 285, 23–34 (2018)

    Article  Google Scholar 

  33. Muhammad, A., Ali, M.A., Shanono, I.H.: Path planning methods for mobile robots: a systematic and bibliometric review. ELEKTRIKA-J. Electr. Eng. 19(3), 14–34 (2020)

    Google Scholar 

  34. Masehian, E., Sedighizadeh, D.: Classic and heuristic approaches in robot motion planning-a chronological review. World Acad. Sci. Eng. Technol. 23(5), 101–106 (2007)

    Google Scholar 

  35. Hwang, Y.K., Ahuja, N.: Gross motion planning-a survey. ACM Comput. Surv. (CSUR) 24(3), 219–291 (1992)

    Article  Google Scholar 

  36. Atyabi, A., Powers, D. : Review of classical and heuristic-based navigation and path planning approaches. Int. J. Adv. Comput. Technol. (IJACT) 5(14), 14 (2013)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank some interesting natural stupidities who have crossed his way and inspired this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Jesús Roldán-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roldán-Gómez, J.J. (2023). Artificial Stupidity in Robotics: Something Unwanted or Somehow Useful?. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 590. Springer, Cham. https://doi.org/10.1007/978-3-031-21062-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21062-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21061-7

  • Online ISBN: 978-3-031-21062-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics