Abstract
Deploying autonomous robots capable of exploring unknown environments has long been a topic of great relevance to the robotics community. In this work, we take a further step in that direction by presenting an open-source active visual SLAM framework that leverages the accuracy of a state-of-the-art graph-SLAM system and takes advantage of the fast utility computation that exploiting the structure of the underlying pose-graph offers. We achieve fast decision making through careful estimation of a posteriori weighted pose-graphs and by employing a utility function that balances exploration and exploitation principles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Throughout this paper, we will equally use FIM and Hessian matrix, since they are equivalent when evaluating the latter at the maximum likelihood estimate.
- 2.
References
Placed, J.A., Strader, J., Carrillo, H., Atanasov, N., Indelman, V., Carlone, L., Castellanos, J.A.: A survey on active simultaneous localization and mapping: State of the art and new frontiers (2022). arXiv preprint arXiv: 2207.00254
Makarenko, A.A., Williams, S.B., Bourgault, F., Durrant-Whyte, H.F.: An experiment in integrated exploration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 534–539 (2002)
Valencia, R., Miró, J.V., Dissanayake, G., Andrade-Cetto, J.: Active pose SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1885–1891 (2012)
Umari, H., Mukhopadhyay, S.: Autonomous robotic exploration based on multiple rapidly-exploring randomized trees. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1396–1402 (2017)
Carrillo, H., Dames, P., Kumar, V., Castellanos, J.A.: Autonomous robotic exploration using a utility function based on Rényi’s general theory of entropy. Auton. Robot. 42(2), 235–256 (2018)
Feder, H.J.S., Leonard, J.J., Smith, C.M.: Adaptive mobile robot navigation and mapping. Int. J. Robot. Res. 18(7), 650–668 (1999)
Deng, D., Xu, Z., Zhao, W., Shimada, K.: Frontier-based automatic-differentiable information gain measure for robotic exploration of unknown 3D environments (2020). arXiv preprint arXiv:2011.05288
Carlone, L., Karaman, S.: Attention and anticipation in fast visual-inertial navigation. IEEE Trans. Rob. 35(1), 1–20 (2018)
Wang, J., Englot, B.: Autonomous exploration with expectation-maximization. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds.) Robotics Research, pp. 759–774. Springer, Cham (2020)
Placed, J.A., Castellanos, J.A.: Fast autonomous robotic exploration using the underlying graph structure. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 6672–6679 (2021)
Khosoussi, K., Huang, S., Dissanayake, G.: Novel insights into the impact of graph structure on SLAM. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2707–2714 (2014)
Khosoussi, K., Giamou, M., Sukhatme, G.S., Huang, S., Dissanayake, G., How, J.P.: Reliable graphs for SLAM. Int. J. Robot. Res. 38(2–3), 260–298 (2019)
Placed, J.A., Castellanos, J.A.: A General Relationship between Optimality Criteria and Connectivity Indices for Active Graph-SLAM (2021). arXiv preprint arXiv:2110.01289
Chen, Y., Huang, S., Fitch, R.: Active SLAM for mobile robots with area coverage and obstacle avoidance. IEEE/ASME Trans. Mechatron. 25(3), 1182–1192 (2020)
Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33(5), 1255–1262 (2017)
Kiefer, J.: General equivalence theory for optimum designs (approximate theory). Ann. Stat. 2, 849–879 (1974)
Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle adjustment-a modern synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) International Workshop on Vision Algorithms, pp. 298–372. Springer, Heidelberg (1999)
Keidar, M., Kaminka, G.A.: Efficient frontier detection for robot exploration. Int. J. Robot. Res. 33(2), 215–236 (2014)
Rösmann, C., Hoffmann, F., Bertram, T.: Integrated online trajectory planning and optimization in distinctive topologies. Robot. Auton. Syst. 88, 142–153 (2017)
Acknowledgments
This work was supported by the Spanish government under grant PID2019-108398GB-I00 and by Aragón government under grant T45-20R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Placed, J.A., Rodríguez, J.J.G., Tardós, J.D., Castellanos, J.A. (2023). ExplORB-SLAM: Active Visual SLAM Exploiting the Pose-graph Topology. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-031-21065-5_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-21065-5_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21064-8
Online ISBN: 978-3-031-21065-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)