Skip to main content

Formation by Consensus in Heterogeneous Robotic Swarms with Twins-in-the-Loop

  • Conference paper
  • First Online:
ROBOT2022: Fifth Iberian Robotics Conference (ROBOT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 589))

Included in the following conference series:

Abstract

This paper presents a case of experimentation with heterogeneous robots swarms (quadrotors and differential drive robots) where part of the agents are real and the rest are digital twins. The software architecture has been developed in ROS2 Foxy, which provides a framework in which real or virtual agents are indistinguishable from the communication point of view. The developed platform allows to define different control objectives for multi-agent systems. In this paper, we illustrate how the formation control of the heterogeneous multi-agent system is achieved. The formation is defined by means of vectors that represent the desired relative positions between agents.

This work was supported in part by Agencia Estatal de Investigación (AEI) under the Project PID2020-112658RB-I00/AEI/10.13039/501100011033, the Project 2021V/-TAJOV/001 and the Project IEData 2016-6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alatise, M.B., Hancke, G.P.: A review on challenges of autonomous mobile robot and sensor fusion methods. IEEE Access 8, 39830–39846 (2020)

    Article  Google Scholar 

  2. Albiero, D., Garcia, A.P., Umezu, C.K., de Paulo, R.L.: Swarm robots in mechanized agricultural operations: a review about challenges for research. Comput. Electron. Agric. 193, 106608 (2022)

    Article  Google Scholar 

  3. Allen, J.M., Joyce, R., Millard, A.G., Gray, I.: The Pi-puck ecosystem: hardware and software support for the e-puck and e-puck2. In: Dorigo, M., et al. (eds.) ANTS 2020. LNCS, vol. 12421, pp. 243–255. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60376-2_19

    Chapter  Google Scholar 

  4. Aranda-Escolástico, E., Colombo, L.J., Guinaldo, M.: Periodic event-triggered targeted shape control of Lagrangian systems with discrete-time delays. ISA Trans. 117, 139–149 (2021)

    Article  Google Scholar 

  5. Casadei, R., Pianini, D., Viroli, M., Weyns, D.: Digital twins, virtual devices, and augmentations for self-organising cyber-physical collectives. Appl. Sci. 12(1), 349 (2021)

    Article  Google Scholar 

  6. Chen, I.Y., MacDonald, B., Wunsche, B.: Mixed reality simulation for mobile robots. In: 2009 IEEE International Conference on Robotics and Automation, pp. 232–237 (2009)

    Google Scholar 

  7. Chung, S., Paranjape, A.A., Dames, P., Shen, S., Kumar, V.: A survey on aerial swarm robotics. IEEE Trans. Rob. 34, 837–855 (2018)

    Article  Google Scholar 

  8. Couceiro, M.S., Vargas, P.A., Rocha, R.P., Ferreira, M.F.: Benchmark of swarm robotics distributed techniques in a search task. Robot. Auton. Syst. 62, 200–213 (2014)

    Article  Google Scholar 

  9. De Melo, M.S.P., da Silva Neto, J.G., Da Silva, P.J.L., Teixeira, J.M.X.N., Teichrieb, V.: Analysis and comparison of robotics 3d simulators. In: 2019 21st Symposium on Virtual and Augmented Reality (SVR), pp. 242–251 (2019)

    Google Scholar 

  10. Dorigo, M., et al.: The swarm-bots project. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 31–44. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_4

    Chapter  Google Scholar 

  11. Farias, G., Fabregas, E., Peralta, E., Torres, E., Dormido, S.: A Khepera IV library for robotic control education using V-REP. IFAC-PapersOnLine 50(1), 9150–9155 (2017)

    Article  Google Scholar 

  12. Giernacki, W., Skwierczyński, M., Witwicki, W., Wroński, P., Kozierski, P.: Crazyflie 2.0 quadrotor as a platform for research and education in robotics and control engineering. In: 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 37–42 (2017)

    Google Scholar 

  13. Hoenig, W., Milanes, C., Scaria, L., Phan, T., Bolas, M., Ayanian, N.: Mixed reality for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5382–5387 (2015)

    Google Scholar 

  14. Kruijff-Korbayová, I., et al.: German rescue robotics center (DRZ): a holistic approach for robotic systems assisting in emergency response. In: 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 138–145 (2021)

    Google Scholar 

  15. Lesire, C., Infantes, G., Gateau, T., Barbier, M.: A distributed architecture for supervision of autonomous multi-robot missions. Auton. Robot. 40(7), 1343–1362 (2016). https://doi.org/10.1007/s10514-016-9603-z

    Article  Google Scholar 

  16. Majid, M.H.A., Arshad, M.R., Mokhtar, R.M.: Swarm robotics behaviors and tasks: a technical review. In: Mariappan, M., Arshad, M.R., Akmeliawati, R., Chong, C.S. (eds.) Control Engineering in Robotics and Industrial Automation. SSDC, vol. 371, pp. 99–167. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-74540-0_5

    Chapter  Google Scholar 

  17. Mañas-Álvarez, F. J., Guinaldo, M., Dormido, R., Socas, R., Dormido, S.: A vision based navigation platform for control learning. In: IFAC Symposium on Advances in Control Education (2022)

    Google Scholar 

  18. Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H.H., Franchi, A.: Decentralized simultaneous multi-target exploration using a connected network of multiple robots. Auton. Robot. 41(4), 989–1011 (2016). https://doi.org/10.1007/s10514-016-9578-9

    Article  Google Scholar 

  19. Nguyen, L.A., Harman, T.L., Fairchild, C.: Swarmathon: a swarm robotics experiment for future space exploration. In: 2019 IEEE International Symposium on Measurement and Control in Robotics (ISMCR), pp. B1–3 (2019)

    Google Scholar 

  20. Panerati, J., Zheng, H., Zhou, S., Xu, J., Prorok, A., Schoellig, A.P.: Learning to fly-a gym environment with pybullet physics for reinforcement learning of multi-agent quadcopter control. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7512–7519 (2021)

    Google Scholar 

  21. Park, H., Easwaran, A., Andalam, S.: TiLA: twin-in-the-loop architecture for cyber-physical production systems. In: 2019 IEEE 37th International Conference on Computer Design (ICCD), pp. 82–90 (2019)

    Google Scholar 

  22. Pinciroli, C., et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5027–5034 (2011)

    Google Scholar 

  23. Ren, W.: Consensus based formation control strategies for multi-vehicle systems. In: 2006 American Control Conference (2006)

    Google Scholar 

  24. Roldán, J.J., Peña-Tapia, E., Garcia-Aunon, P., Del Cerro, J., Barrientos, A.: Bringing adaptive and immersive interfaces to real-world multi-robot scenarios: application to surveillance and intervention in infrastructures. IEEE Access 7, 86319–86335 (2019)

    Article  Google Scholar 

  25. Roldán-Gómez, J.J., de León Rivas, J., Garcia-Aunon, P., Barrientos, A.: Una revisión de los sistemas multi-robot: desafíos actuales para los operadores y nuevos desarrollos de interfaces. In: Revista Iberoamericana de Automática e Informática industrial, vol. 17, no. 3 (2020)

    Google Scholar 

  26. Selecký, M., Faigl, J., Rollo, M.: Mixed reality simulation for incremental development of multi-UAV systems. In: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1530–1538 (2017)

    Google Scholar 

  27. Sievers, T.S., Schmitt, B., Ruckert, P., Petersen, M., Tracht, K.: Concept of a mixed-reality learning environment for collaborative robotics. Elsevier Procedia Manuf. 45, 19–24 (2020)

    Article  Google Scholar 

  28. Soni, A., Hu, H.: Formation control for a fleet of autonomous ground vehicles: a survey. Robotics 7(4), 67 (2018)

    Article  Google Scholar 

  29. Tzavara, E., Angelakis, P., Veloudis, G., Gkournelos, C., Makris, S.: Worker in the loop: a framework for enabling human-robot collaborative assembly. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds.) APMS 2021. IAICT, vol. 630, pp. 275–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85874-2_29

    Chapter  Google Scholar 

  30. Wen, J., He, L., Zhu, F.: Swarm robotics control and communications: imminent challenges for next generation smart logistics. IEEE Commun. Mag. 56(7), 102–107 (2018)

    Article  Google Scholar 

  31. Wu, M., et al.: Torch: strategy evolution in swarm robots using heterogeneous-homogeneous coevolution method. J. Ind. Inf. Integr. 25, 100239 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco-José Mañas-Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mañas-Álvarez, FJ., Guinaldo, M., Dormido, R., Socas, R., Dormido, S. (2023). Formation by Consensus in Heterogeneous Robotic Swarms with Twins-in-the-Loop. In: Tardioli, D., Matellán, V., Heredia, G., Silva, M.F., Marques, L. (eds) ROBOT2022: Fifth Iberian Robotics Conference. ROBOT 2022. Lecture Notes in Networks and Systems, vol 589. Springer, Cham. https://doi.org/10.1007/978-3-031-21065-5_36

Download citation

Publish with us

Policies and ethics