Skip to main content

Design Space Exploration for Sampling-Based Motion Planning Programs with Combinatory Logic Synthesis

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XV (WAFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 25))

Included in the following conference series:

Abstract

Motion Planning is widely acknowledged as a fundamental problem of robotics. Due to the continuous efforts of the scientific community, various algorithmic families emerged that have different strengths and weaknesses. Finding a suitable motion planning program is often not trivial for real-world problems, as various domain-specific factors must be considered. An obvious example is a potential trade-off between path length, computation time, and resource constraints. We propose a technique to systematically explore the space of suitable programs, aiming to find Pareto optimal algorithm configurations. Our approach makes use of Combinatory Logic Synthesis to perform component-based software composition. Software components are injected with domain-knowledge, effectively restricting the solution space of synthesizable programs. We synthesize sample-based global planning programs that make use of the Open Motion Planning Library (OMPL) and evaluate the produced programs to yield numeric result vectors. These steps are encapsulated in a black-box function which is used with a multi-objective optimization tool (Hypermapper) to yield an automatic, learning-based search procedure for a given feature space. We validate our approach with a series of experiments that demonstrate the extensibility and transferability of our methodology regarding different robotic systems and planning instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://omplapp.kavrakilab.org/.

References

  1. Bessai, J.: A type-theoretic framework for software component synthesis. Ph.D. thesis, Technical University of Dortmund, Germany (2019). http://hdl.handle.net/2003/38387

  2. Bessai, J., Chen, T., Dudenhefner, A., Düdder, B., de’Liguoro, U., Rehof, J.: Mixin composition synthesis based on intersection types. Log. Methods Comput. Sci. 14(1) (2018)

    Google Scholar 

  3. Bessai, J., Düdder, B., Heineman, G.T., Rehof, J.: Combinatory synthesis of classes using feature grammars. In: FACS. Lecture Notes in Computer Science, vol. 9539, pp. 123–140. Springer (2015)

    Google Scholar 

  4. Bessai, J., Düdder, B., Heineman, G.T., Rehof, J.: Towards language-independent code synthesis (2018). https://popl18.sigplan.org/details/PEPM-2018/12/Towards-Language-independent-Code-Synthesis-Poster-Demo-Talk-, Poster and Talk

  5. Bessai, J., Dudenhefner, A., Düdder, B., Martens, M., Rehof, J.: Combinatory logic synthesizer. In: ISoLA (1). Lecture Notes in Computer Science, vol. 8802, pp. 26–40. Springer, Berlin (2014)

    Google Scholar 

  6. Brock, O., Khatib, O.: Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  7. Campigotto, P., Passerini, A., Battiti, R.: Active learning of pareto fronts. IEEE Trans. Neural Netw. Learn. Syst. 25(3), 506–519 (2014)

    Article  Google Scholar 

  8. Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. Int. J. Robot. Res. 26(8), 845–863 (2007)

    Article  Google Scholar 

  9. Graefenstein, J., Winkels, J., Lenz, L., Weist, K., Krebil, K., Gralla, M.: A hybrid approach of modular planning—synchronizing factory and building planning by using component based synthesis. In: HICSS, pp. 1–9. ScholarSpace (2020)

    Google Scholar 

  10. Gulwani, S., Polozov, O., Singh, R.: Program synthesis. Found. Trends Program. Lang. 4(1–2), 1–119 (2017)

    Google Scholar 

  11. Heineman, G.T., Bessai, J., Düdder, B., Rehof, J.: A long and winding road towards modular synthesis. In: ISoLA (1). Lecture Notes in Computer Science, vol. 9952, pp. 303–317 (2016)

    Google Scholar 

  12. Heineman, G.T., Hoxha, A., Düdder, B., Rehof, J.: Towards migrating object-oriented frameworks to enable synthesis of product line members. In: Schmidt, D.C. (ed.) Proceedings of the 19th International Conference on Software Product Line, SPLC 2015, Nashville, TN, USA, July 20–24, 2015, pp. 56–60. ACM (2015), https://doi.org/10.1145/2791060.2791076

  13. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators, an Introduction. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  14. Hosny, A., Hashemi, S., Shalan, M., Reda, S.: Drills: deep reinforcement learning for logic synthesis. In: ASP-DAC, pp. 581–586. IEEE (2020)

    Google Scholar 

  15. Hsu, D., Latombe, J., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl. 9(4/5), 495–512 (1999)

    Article  MathSciNet  Google Scholar 

  16. Ichter, B., Schmerling, E., Lee, T.W.E., Faust, A.: Learned critical probabilistic roadmaps for robotic motion planning. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9535–9541 (2020)

    Google Scholar 

  17. Ïpek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M.: Efficiently exploring architectural design spaces via predictive modeling. SIGPLAN Not. 41(11), 195–206 (2006)

    Google Scholar 

  18. Jamshidi, P., Camara, J., Schmerl, B., Kaestner, C., Garlan, D.: Machine learning meets quantitative planning: enabling self-adaptation in autonomous robots. In: 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 39–50. IEEE (2505–2019)

    Google Scholar 

  19. Kallat, F., Pfrommer, J., Bessai, J., Rehof, J., Meyer, A.: Automatic building of a repository for component-based synthesis of warehouse simulation models. Procedia CIRP 104, 1440–1445 (2021), 54th CIRP CMS 2021—Towards Digitalized Manufacturing 4.0

    Google Scholar 

  20. Kavraki, L.E., Svestka, P., Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  21. Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.M.: A Machine Learning Approach for Feature-Sensitive Motion Planning, pp. 361–376. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

    Google Scholar 

  22. Nardi, L., Koeplinger, D., Olukotun, K.: Practical design space exploration. In: MASCOTS, pp. 347–358. IEEE Computer Society (2019)

    Google Scholar 

  23. Pan, J., Chitta, S., Manocha, D.: FCL: a general purpose library for collision and proximity queries. In: ICRA, pp. 3859–3866. IEEE (2012)

    Google Scholar 

  24. Rehof, J.: Towards combinatory logic synthesis. In: 1st International Workshop on Behavioural Types, BEAT (2013)

    Google Scholar 

  25. Rehof, J., Urzyczyn, P.: Finite combinatory logic with intersection types. In: TLCA. Lecture Notes in Computer Science, vol. 6690, pp. 169–183. Springer (2011)

    Google Scholar 

  26. Rehof, J., Vardi, M.Y.: Design and synthesis from components (dagstuhl seminar 14232). Dagstuhl Rep. 4(6), 29–47 (2014)

    Google Scholar 

  27. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pp. 421–427 (1979)

    Google Scholar 

  28. Saeedi, S., Nardi, L., Johns, E., Bodin, B., Kelly, P.H.J., Davison, A.J.: Application-oriented design space exploration for slam algorithms. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5716–5723 (2017)

    Google Scholar 

  29. Sánchez-Ante, G., Latombe, J.: A single-query bi-directional probabilistic roadmap planner with lazy collision checking. In: ISRR. Springer Tracts in Advanced Robotics, vol. 6, pp. 403–417. Springer, Berlin (2001)

    Google Scholar 

  30. Schäfer, T., Bergmann, J.A., Carballo, R.G., Rehof, J., Wiederkehr, P.: A synthesis-based tool path planning approach for machining operations. Procedia CIRP 104, 918–923 (2021), 54th CIRP CMS 2021—Towards Digitalized Manufacturing 4.0

    Google Scholar 

  31. Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (2012). https://ompl.kavrakilab.org

  32. Wang, J., Meng, M.Q.H., Khatib, O.: EB-RRT: optimal motion planning for mobile robots. IEEE Trans. Autom. Sci. Eng. 17(4), 2063–2073 (2020)

    Article  Google Scholar 

  33. Wenzel, S., Stolipin, J., Rehof, J., Winkels, J.: Trends in automatic composition of structures for simulation models in production and logistics. In: WSC, pp. 2190–2200. IEEE (2019)

    Google Scholar 

  34. Xiang, Y., Huang, H., Zhou, Y., Li, S., Luo, C., Lin, Q., Li, M., Yang, X.: Search-based diverse sampling from real-world software product lines. In: 2022 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). International Conference on Software Engineering. Proceedings, IEEE (2022), not yet published as of 04/02/2022

    Google Scholar 

  35. Zuluaga, M., Krause, A., Püschel, M.: e-pal: an active learning approach to the multi-objective optimization problem. J. Mach. Learn. Res. 17(104), 1–32 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schäfer, T., Bessai, J., Chaumet, C., Rehof, J., Riest, C. (2023). Design Space Exploration for Sampling-Based Motion Planning Programs with Combinatory Logic Synthesis. In: LaValle, S.M., O’Kane, J.M., Otte, M., Sadigh, D., Tokekar, P. (eds) Algorithmic Foundations of Robotics XV. WAFR 2022. Springer Proceedings in Advanced Robotics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-031-21090-7_3

Download citation

Publish with us

Policies and ethics