Skip to main content

CSS–A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization

  • Conference paper
  • First Online:
Bioinspired Optimization Methods and Their Applications (BIOMA 2022)

Abstract

Due to the complex topology of the search space, expensive multi-objective evolutionary algorithms (EMOEAs) emphasize enhancing the exploration capability. Many algorithms use ensembles of surrogate models to boost the performance. Generally, the surrogate-based model either works out the solution’s fitness by approximating the evaluation function or selects the solution by weighting the uncertainty degree of candidate solutions. This paper proposes a selection operator called Cheap surrogate selection (CSS) for multi-objective problems by utilizing the density probability on a k-dimensional tree. As opposed to the first type of surrogate models, which approximate the objective function, the proposed CSS only estimates the uncertainty of the candidate solutions. As a result, CSS does not require extensive sampling or training. Besides, CSS makes use of neighbors’ density and builds the tree with low computational complexity, resulting in an accelerated surrogate process. Moreover, a new EMOEA is proposed by integrating spherical search as the core optimizer with the proposed selection scheme. Over a wide variety of benchmark problems, we show that the proposed method outperforms several state-of-the-art EMOEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    code link: https://drive.google.com/drive/folders/14uif4ozlZCrJ8EAi4FrlUUk9GKrh72IR?usp=sharing.

  2. 2.

    https://github.com/BIMK/PlatEMO.

References

  1. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2016)

    Article  Google Scholar 

  2. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: Pesa-ii: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation, pp. 283–290. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  3. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary multiobjective optimization, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

  6. Durillo, J.J., Nebro, A.J., Alba, E.: The jmetal framework for multi-objective optimization: Design and architecture. In: IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

    Google Scholar 

  7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  MATH  Google Scholar 

  8. Gong, W., Zhou, A., Cai, Z.: A multioperator search strategy based on cheap surrogate models for evolutionary optimization. IEEE Trans. Evol. Comput. 19(5), 746–758 (2015)

    Article  Google Scholar 

  9. Guerrero-Pena, E., Araújo, A.F.R.: Multi-objective evolutionary algorithm with prediction in the objective space. Inf. Sci. 501, 293–316 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, C., Huang, S., Cheng, R., Tan, K.C., Jin, Y.: IEEE transactions on cybernetics 51(6), 3129–3142 (2020)

    Google Scholar 

  11. Hong, W., Tang, K., Zhou, A., Ishibuchi, H., Yao, X.: A scalable indicator-based evolutionary algorithm for large-scale multiobjective optimization. IEEE Trans. Evol. Comput. 23(3), 525–537 (2018)

    Article  Google Scholar 

  12. Hua, Y., Jin, Y., Hao, K.: A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular pareto fronts. IEEE Trans. Cybern. 49(7), 2758–2770 (2018)

    Article  Google Scholar 

  13. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  14. Kang, F., Xu, Q., Li, J.: Slope reliability analysis using surrogate models via new support vector machines with swarm intelligence. Appl. Math. Model. 40(11–12), 6105–6120 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)

    Article  Google Scholar 

  16. Kumar, A., Das, S., Zelinka, I.: A self-adaptive spherical search algorithm for real-world constrained optimization problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, pp. 13–14 (2020)

    Google Scholar 

  17. Kumar, A., Misra, R.K., Singh, D., Mishra, S., Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019)

    Article  Google Scholar 

  18. Lin, Q., et al.: Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans. Evol. Comput. 22(1), 32–46 (2016)

    Article  Google Scholar 

  19. Marron, J., Nolan, D.: Canonical kernels for density estimation. Stat. Probab. Lett. 7(3), 195–199 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans. Evol. Comput. 23(1), 74–88 (2018)

    Article  Google Scholar 

  21. Panichella, A.: An adaptive evolutionary algorithm based on non-euclidean geometry for many-objective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 595–603 (2019)

    Google Scholar 

  22. Phan, D.H., Suzuki, J.: R2-ibea: R2 indicator based evolutionary algorithm for multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1836–1845. IEEE (2013)

    Google Scholar 

  23. Su, G., Peng, L., Hu, L.: A gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis. Struct. Saf. 68, 97–109 (2017)

    Article  Google Scholar 

  24. Sun, Y., Yen, G.G., Yi, Z.: IG indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187 (2018)

    Article  Google Scholar 

  25. Tanabe, R., Ishibuchi, H.: An easy-to-use real-world multi-objective optimization problem suite. Appl. Soft Comput. 89, 106078 (2020)

    Article  Google Scholar 

  26. Tian, Y., Cheng, R., Zhang, X., Cheng, F., Jin, Y.: An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 22(4), 609–622 (2017)

    Article  Google Scholar 

  27. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73–87 (2017)

    Article  Google Scholar 

  28. Tian, Y., Liu, R., Zhang, X., Ma, H., Tan, K.C., Jin, Y.: A multi-population evolutionary algorithm for solving large-scale multi-modal multi-objective optimization problems. University of Surrey, Technical Report (2020)

    Google Scholar 

  29. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440–462 (2016)

    Google Scholar 

  30. Wang, H., Zhu, X., Du, Z.: Aerodynamic optimization for low pressure turbine exhaust hood using kriging surrogate model. Int. Commun. Heat Mass Trans. 37(8), 998–1003 (2010)

    Article  Google Scholar 

  31. Zhang, Q., Li, H.: Moea/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  32. Zhang, X., Zheng, X., Cheng, R., Qiu, J., Jin, Y.: A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 427, 63–76 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 892–899. IEEE (2006)

    Google Scholar 

  34. Zhou, L., Zhou, A., Zhang, G., Shi, C.: An estimation of distribution algorithm based on nonparametric density estimation. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 1597–1604. IEEE (2011)

    Google Scholar 

  35. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evolutionary algorithm. TIK-report 103 (2001)

    Google Scholar 

  36. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowlegement

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic in project META MO-COP, reg. No. LTAIN19176.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Václav Snášel or Swagatam Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kong, L., Kumar, A., Snášel, V., Das, S., Krömer, P., Ojha, V. (2022). CSS–A Cheap-Surrogate-Based Selection Operator for Multi-objective Optimization. In: Mernik, M., Eftimov, T., Črepinšek, M. (eds) Bioinspired Optimization Methods and Their Applications. BIOMA 2022. Lecture Notes in Computer Science, vol 13627. Springer, Cham. https://doi.org/10.1007/978-3-031-21094-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21094-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21093-8

  • Online ISBN: 978-3-031-21094-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics