Skip to main content

A Network-based Approach for Inferring Thresholds in Co-expression Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

  • 1845 Accesses

Abstract

Gene co-expression networks (GCNs) specify binary relationships between genes and are of biological interest because significant network relationships suggest that two co-expressed genes rise and fall together across different cellular conditions. GCNs are built by (i) calculating a co-expression measure between each pair of genes and (ii) selecting a significance threshold to remove spurious relationships among genes. This paper introduces a threshold criterion based on the underlying topology of the network. More specifically, the criterion considers both the rate at which isolated nodes are added to the network and the density of its components when the threshold varies. In addition to Pearson’s correlation measure, the biweight midcorrelation, the distance correlation, and the maximal information coefficient are used to build different GCNs from the same data and showcase the advantages of the proposed approach. Finally, a case study presents a comparison of the predictive performance of the different networks when trying to predict gene functional annotations using hierarchical multi-label classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, K., Ogata, Y., Shibata, D.: Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 48, 381–90 (2007)

    Article  Google Scholar 

  2. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C.L., Serova, N., Davis, S., Soboleva, A.: NCBI GEO: archive for functional genomics data sets-update. Nucl. Acids Res. 41(D1), D991–D995 (2012). https://doi.org/10.1093/nar/gks1193

  3. Carter, S.L., Brechbühler, C.M., Griffin, M., Bond, A.T.: Gene co-expression network topology provides a framework for molecular characterization of cellular state. Bioinformatics 20(14), 2242–2250 (2004). https://doi.org/10.1093/bioinformatics/bth234

  4. Couto, C.M.V., Comin, C.H., Costa, L.D.F.: Effects of threshold on the topology of gene co-expression networks. Molecular Biosyst. 13, 2024–2035 (2017)

    Google Scholar 

  5. Gene Ontology Consortium: The gene ontology resource: 20 years and still going strong. Nucl. Acids Res. 47(D1), D330–D338 (2019)

    Article  Google Scholar 

  6. Hou, J., Ye, X., Feng, W., Zhang, Q., Han, Y., Liu, Y., Li, Y., Wei, Y.: Distance correlation application to gene co-expression network analysis. BMC Bioinform. 23, 81 (2022)

    Article  Google Scholar 

  7. Huang, D.W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large gene lists using david bioinformatics resources. Nature Prot. 4, 44–57 (2009)

    Article  Google Scholar 

  8. Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008)

    Article  Google Scholar 

  9. Levatić, J., Kocev, D., Džeroski, S.: The importance of the label hierarchy in hierarchical multi-label classification. J. Intell. Inform. Syst. 45(2), 247–271 (2015). http://link.springer.com/10.1007/s10844-014-0347-y

  10. Margolin, A.A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7(Suppl 1), S7 (2006)

    Google Scholar 

  11. Rau, C., Wisniewski, N., Orozco, L., Bennett, B., Weiss, J., Lusis, A.: Maximal information component analysis: a novel non-linear network analysis method. Front. Genet. 4 (2013). https://www.frontiersin.org/article/10.3389/fgene.2013.00028

  12. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science (New York, N.Y.) 334, 1518–1524 (2011)

    Google Scholar 

  13. Schaefer, R.J., Michno, J.M., Jeffers, J., Hoekenga, O., Dilkes, B., Baxter, I., Myers, C.L.: Integrating co-expression networks with gwas to prioritize causal genes in maize. The Plant Cell 30, 2922–2942 (2018)

    Article  Google Scholar 

  14. Silverman, E.K., Schmidt, H.H.H.W., Anastasiadou, E., Altucci, L., Angelini, M., Badimon, L., Balligand, J.L., Benincasa, G., Capasso, G., Conte, F., Di Costanzo, A., Farina, L., Fiscon, G., Gatto, L., Gentili, M., Loscalzo, J., Marchese, C., Napoli, C., Paci, P., Petti, M., Quackenbush, J., Tieri, P., Viggiano, D., Vilahur, G., Glass, K., Baumbach, J.: Molecular networks in network medicine: development and applications. Wiley Interdisciplinary Reviews. Syst. Biol. Med. 12, e1489 (2020)

    Google Scholar 

  15. Song, L., Langfelder, P., Horvath, S.: Comparison of co-expression measures: mutual information, correlation, and model based indices. BMC Bioinform. 13, 328 (2012)

    Article  Google Scholar 

  16. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

    Article  MATH  Google Scholar 

  17. van Verk, M.C., Bol, J.F., Linthorst, H.J.M.: Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol. 11, 88 (2011)

    Article  Google Scholar 

  18. Wang, Y.X.R., Li, L., Li, J.J., Huang, H.: Network modeling in biology: statistical methods for gene and brain networks. Stati. Sci. Rev. J. Inst. Math. Stat. 36, 89–108 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, L., Yu, S., Zuo, K., Luo, L., Tang, K.: Identification of gene modules associated with drought response in rice by network-based analysis. PLOS ONE 7, e33748 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the OMICAS program: Optimización Multiescala In-silico de Cultivos Agrícolas Sostenibles (Infraestructura y Validación en Arroz y Caña de Azúcar), anchored at the Pontificia Universidad Javeriana in Cali and funded within the Colombian Scientific Ecosystem by The World Bank, the Colombian Ministry of Science, Technology and Innovation, the Colombian Ministry of Education, and the Colombian Ministry of Industry and Tourism, and ICETEX, under GRANT ID: FP44842-217-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás López-Rozo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Rozo, N., Romero, M., Finke, J., Rocha, C. (2023). A Network-based Approach for Inferring Thresholds in Co-expression Networks. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics