Skip to main content

Detection of Sparsity in Multidimensional Data Using Network Degree Distribution and Improved Supervised Learning with Correction of Data Weighting

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

  • 1614 Accesses

Abstract

Multidimensional data are representatives in a wide range of applications, from those in the latest state-of-the-art science and technology to specific social issues. And they have been subject to analysis using methods such as regression analysis and machine learning. However, they are rarely obtained as complete data and contain more or less biases and deficiencies. In this study, we form a network from a multidimensional dataset and use its degree distribution to detect data sparsity. Although model analysis based on the degree distribution has been conducted for many years, sparsity detection has not been a target of the degree distribution analysis. Furthermore, we attempt to increase the accuracy and precision of supervised learning by applying regressive weighting according to node grouping in the degree distribution spectrum. By making use of this algorithm, we can expand the range of utilization of incomplete data together with other promising progresses in complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fitzmaurice, F.M., Laird, N.M., Ware, J.H.: Applied Longitudinal Analysis. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  2. Blomeke, R.C., Elliott, J.S., Senjaya, B., Hales, G.T.: A comparison of fingerprint image quality and matching performance between healthcare and general populations. In: Proceedings of 2009 IEEE 3rd International Conference on BTAS, vol. 9, pp. 1-4, IEEE, Washington DC (2009)

    Google Scholar 

  3. Morris, D., Coyle, S., Wu, Y., Lau, T.K., Wallace, G., Diamond, D.: Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuators B Chem. 139, 231–236 (2009)

    Article  Google Scholar 

  4. Jiang, Z., Hu, M., Gao, Z., Fan, L., Dai, R., Pan, Y., Tang, W., Zhai, G., Lu, Y.: Detection of respiratory infections using RGB-infrared sensors on portable device. IEEE Sens. J. 20, 13674–13681 (2020)

    Article  Google Scholar 

  5. Lee, S.J., Kim, H.M., Kim, S.I., Lee, H.M.: Evaluation of structural integrity of rail-way bridge using acceleration data and semi-supervised learning approach. Eng. Struct. 239, 1–16 (2021)

    Article  Google Scholar 

  6. Shim, S., Kim, J., Lee, S.W., Cho, G.C.: Road damage detection using super-resolution and semi-supervised learning with generative adversarial network. Autom. Constr. 135, 1–16 (2022)

    Article  Google Scholar 

  7. Chandy, R.P., Scully, P.J., Thomas, D.: A novel technique for online measurement of scaling using a multimode optical fibre sensor for industrial applications. Sens. Actuators B Chem. 71, 19–23 (2000)

    Article  Google Scholar 

  8. Zhou, Z.-K., Wang, U.-K., Gong, H.-G., Shi, Y., Wang, Z., Zhang, B.: A fully-integrated optoelectronic detector with high gain bandwidth product. IEEE Access 7, 53032–53039 (2019)

    Article  Google Scholar 

  9. Wotrnba, H.: Sensor sorting technology-is the minerals industry missing a chance? In: Proceedings XIII IMPC Istanbul 2006, pp. 21-29. IMPC, Istanbul (2006)

    Google Scholar 

  10. Leelasattarathkul, T., Liawruangrath, S., Rayanakorn, M., Liawruangrath, B., Oungpipat, W., Youngvises, N.: Greener analytical method for the determination of copper(II) in wastewater by micro flow system with optical sensor. Talanta 72, 126–131 (2007)

    Article  Google Scholar 

  11. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A., Kim, C.: Machine learning in materials informatics: recent applications and prospects. Comput. Mater. 3(54), 1–13 (2017)

    Google Scholar 

  12. Sakai, O., Morita, T., Ueda, Y., Sano, N., Tachibana, K.: Chemical filters by non-thermal atmospheric pressure plasmas for reactive fields. Thin Solid Films 519, 6999–7004 (2011)

    Article  Google Scholar 

  13. Urabe, K., Hiraoka, Y., Sakai, O.: Hydrazine generation for the reduction process using small-scale plasmas in an argon/ammonia mixed gas flow. Plasma Sources Sci. Technol. 22, 032003-1-4 (2013)

    Google Scholar 

  14. Urabe, K., Sakai, O.: Multiheterodyne interference spectroscopy using a probing optical frequency comb and a reference single-frequency laser. Phys. Rev. A 88, 023856-1-5 (2013)

    Google Scholar 

  15. Girolami, M., Mischak, H., Krebs, R.: Analysis of complex, multidimensional datasets. Drug Discovery Today: Technol. 3(1), 13–19 (2006)

    Article  Google Scholar 

  16. Song, X., Wu, M., Jermaine, C., Ranka, S.: Statistical change detection for multi-dimensional data. In: KDD’07, SIGKDD, pp. 667-676. California (2007)

    Google Scholar 

  17. Dempster, A.P.: An overview of multivariate data analysis. J. Multivar. Anal. 1, 316–346 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zaidan, M.A., Motalagh, N.H., Fung, P.L., Lu, D., Timonen, H., Kuula, J., Niemi, J.V., Tarkoma, S., Petaja, T., Kulmala, M., Hussein, T.: Intelligent calibration and virtual sensing for integrated low-cost air quality sensors. IEEE Sens. J. 20, 13638–13652 (2020)

    Article  Google Scholar 

  19. Goodacre, R., Neal, M.J., Kell, D.B.: Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra. Zentralbl Bakteriol 284, 516–539 (1996)

    Article  Google Scholar 

  20. Fang, J., Yang, F., Tong, R., Yu, Q., Dai, X.: Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning. Glob. Energy Interconnection 4, 596–607 (2021)

    Article  Google Scholar 

  21. Ueno, S., Sakai, O.: Data driven calibration of color-sensitive optical sensor by supervised learning for botanical application. IEEE Sens. J. 22, 11915–11927 (2022). https://doi.org/10.1109/JSEN.2022.3171221

    Article  Google Scholar 

  22. Ueno, S., Sakai, O.: Low-cost color-sensitive optical sensor calibrated by sparse training data. In: Proceedings of the 2021 IEEE 10th GCCE, pp. 402-403. IEEE Consumer Technology Society, Kyoto (2021)

    Google Scholar 

  23. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  24. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis. Counter-Terrorism and Security, pp. 798–805. SIAM, Maryland (2005)

    Google Scholar 

  26. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley, New York, NY, USA (1987)

    Book  MATH  Google Scholar 

  27. Tanner, M.A., Wong, W.H.: The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–550 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Horvitz, D.G., Thompson, D.J.: A generalization of sampling without replacement from a finite universe. J. Am. Stat. Assoc. 47, 663–685 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scharfstein, D.O., Rotnitzky, A., Robins, J.M.: Adjusting for nonignorable drop-out using semiparametric nonresponse models. J. Am. Stat. Assoc. 94, 1096–1146 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma, M., Korniss, G., Szymanski, B.K.: Learning parameters for balanced index influence maximization. In: Processing 9th International Conference on Complex Networks and Their Applications, pp. 167–177. Springer, Madrid (2020)

    Google Scholar 

  32. Xue, J.-H., Hall, P.: Why does rebalancing class-unbalanced data improve AUC for linear discriminant analysis? IEEE Trans. Pattern Anal. Mach. Intell. 37(5), 1109–1112 (2015)

    Article  Google Scholar 

  33. Itten, J.: The Elements of Color. Van Nostrand Reinhold, New York, USA (1970)

    Google Scholar 

  34. Cytoscape open API. https://cytoscape.org/

  35. The R Project for Statistical Computing. https://www.r-project.org/

  36. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the members of in Checkers Co., Ltd., in particular Dr. K. Taguchi, for his useful comments. This work is partially supported by the Regional ICT Research Center of Human, Industry and Future at The University of Shiga Prefecture, by the Cabinet Office, Government of Japan, and by a Grant-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT/JSPS KAKENHI) with Grant No. 22K18704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ueno, S., Sakai, O. (2023). Detection of Sparsity in Multidimensional Data Using Network Degree Distribution and Improved Supervised Learning with Correction of Data Weighting. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics