Skip to main content

Geometric Deep Learning Graph Pruning to Speed-Up the Run-Time of Maximum Clique Enumerarion Algorithms

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

  • 1863 Accesses

Abstract

In this paper we propose a method to reduce the running time to solve the Maximum Clique Enumeration (MCE) problem. Specifically, given a network we employ geometric deep learning in order to find a simpler network on which running the algorithm to derive the MCE. Our approach is based on finding a strategy to remove from the network nodes that are not functional to the solution. In doing so, the resulting network will have a reduced size and, as a result, search times of the MCE is reduced. We show that our approach is able to obtain a solver speed-up up to 42 times, while keeping all the maximum cliques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). https://doi.org/10.1145/362342.362367

    Article  MATH  Google Scholar 

  2. Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. (TODS) 36(4), 1–34 (2011)

    Article  Google Scholar 

  3. Costa, L.D.F., Oliveira, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)

    Google Scholar 

  4. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJ. Complex Syst. 1695 (2006). https://igraph.org

  5. Fan, C., Zeng, L., Sun, Y., Liu, Y.Y.: Finding key players in complex networks through deep reinforcement learning. Nature Mach. Intel. 2(6), 317–324 (2020). https://doi.org/10.1038/s42256-020-0177-2

    Article  Google Scholar 

  6. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  7. Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinform. 12(1), 1–9 (2011)

    Google Scholar 

  8. Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nature Commun. 12(1), 5190 (2021). https://doi.org/10.1038/s41467-021-25485-8

    Article  Google Scholar 

  9. Grassia, M., Lauri, J., Dutta, S., Ajwani, D.: Learning multi-stage sparsification for maximum clique enumeration (2019)

    Google Scholar 

  10. Grassia, M., Mangioni, G.: wsGAT: weighted and signed graph attention networks for link prediction. In: International Conference on Complex Networks and Their Applications, pp. 369–375. Springer (2021). https://doi.org/10.1007/978-3-030-93409-5_31

  11. Jin, Y., Xiong, B., He, K., Zhou, Y., Zhou, Y.: On fast enumeration of maximal cliques in large graphs. Expert Syst. Appl. 187, 115915 (2022)

    Article  Google Scholar 

  12. Johnston, H.: Cliques of a graph-variations on the Bron-kerbosch algorithm. Int. J. Comput. Inf. Sci. 5(3), 209–238 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kose, F., Weckwerth, W., Linke, T., Fiehn, O.: Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17(12), 1198–1208 (2001)

    Article  Google Scholar 

  14. Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration variants of subset problems. Proc. AAAI Conf. Artif. Intel. 33(01), 2314–2321 (2019). https://ojs.aaai.org/index.php/AAAI/article/view/4070

  15. Lauri, J., Dutta, S., Grassia, M., Ajwani, D.: Learning fine-grained search space pruning and heuristics for combinatorial optimization (2020)

    Google Scholar 

  16. Li, X., Zhou, R., Chen, L., Zhang, Y., Liu, C., He, Q., Yang, Y.: Finding a summary for all maximal cliques. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1344–1355. IEEE (2021)

    Google Scholar 

  17. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009). https://doi.org/10.1093/bioinformatics/btp311

    Article  Google Scholar 

  18. Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: A clique-based method using dynamic programming for computing edit distance between unordered trees. J. Comput. Biol. 19(10), 1089–1104 (2012)

    Article  MathSciNet  Google Scholar 

  19. Östergård, P.R.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1–3), 197–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pardalos, P.M., Xue, J.: The maximum clique problem. J. Global Opt. 4(3), 301–328 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, W.K., Choudhary, A.: Fast algorithms for the maximum clique problem on massive graphs with applications to overlapping community detection. Internet Math. 11(4–5), 421–448 (2015)

    Google Scholar 

  22. Peixoto, T.P.: The graph-tool python library. figshare (2014), http://figshare.com/articles/graph_tool/1164194

  23. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  24. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.), Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

  25. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. STAT 1050, 20 (2017)

    Google Scholar 

  26. Zhang, C., Zhang, Y., Zhang, W., Qin, L., Yang, J.: Efficient maximal spatial clique enumeration. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 878–889 (2019)

    Google Scholar 

Download references

Acknowledgment

This work has been partially supported by the project of University of Catania PIACERI, PIAno di inCEntivi per la Ricerca di Ateneo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Carchiolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arciprete, A., Carchiolo, V., Chiavetta, D., Grassia, M., Malgeri, M., Mangioni, G. (2023). Geometric Deep Learning Graph Pruning to Speed-Up the Run-Time of Maximum Clique Enumerarion Algorithms. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics