Abstract
In this paper we propose a method to reduce the running time to solve the Maximum Clique Enumeration (MCE) problem. Specifically, given a network we employ geometric deep learning in order to find a simpler network on which running the algorithm to derive the MCE. Our approach is based on finding a strategy to remove from the network nodes that are not functional to the solution. In doing so, the resulting network will have a reduced size and, as a result, search times of the MCE is reduced. We show that our approach is able to obtain a solver speed-up up to 42 times, while keeping all the maximum cliques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973). https://doi.org/10.1145/362342.362367
Cheng, J., Ke, Y., Fu, A.W.C., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACM Trans. Database Syst. (TODS) 36(4), 1–34 (2011)
Costa, L.D.F., Oliveira, O.N., Travieso, G., Rodrigues, F.A., Villas Boas, P.R., Antiqueira, L., Viana, M.P., Correa Rocha, L.E.: Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv. Phys. 60(3), 329–412 (2011)
Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJ. Complex Syst. 1695 (2006). https://igraph.org
Fan, C., Zeng, L., Sun, Y., Liu, Y.Y.: Finding key players in complex networks through deep reinforcement learning. Nature Mach. Intel. 2(6), 317–324 (2020). https://doi.org/10.1038/s42256-020-0177-2
Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)
Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based method for the edit distance between unordered trees and its application to analysis of glycan structures. BMC Bioinform. 12(1), 1–9 (2011)
Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nature Commun. 12(1), 5190 (2021). https://doi.org/10.1038/s41467-021-25485-8
Grassia, M., Lauri, J., Dutta, S., Ajwani, D.: Learning multi-stage sparsification for maximum clique enumeration (2019)
Grassia, M., Mangioni, G.: wsGAT: weighted and signed graph attention networks for link prediction. In: International Conference on Complex Networks and Their Applications, pp. 369–375. Springer (2021). https://doi.org/10.1007/978-3-030-93409-5_31
Jin, Y., Xiong, B., He, K., Zhou, Y., Zhou, Y.: On fast enumeration of maximal cliques in large graphs. Expert Syst. Appl. 187, 115915 (2022)
Johnston, H.: Cliques of a graph-variations on the Bron-kerbosch algorithm. Int. J. Comput. Inf. Sci. 5(3), 209–238 (1976)
Kose, F., Weckwerth, W., Linke, T., Fiehn, O.: Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17(12), 1198–1208 (2001)
Lauri, J., Dutta, S.: Fine-grained search space classification for hard enumeration variants of subset problems. Proc. AAAI Conf. Artif. Intel. 33(01), 2314–2321 (2019). https://ojs.aaai.org/index.php/AAAI/article/view/4070
Lauri, J., Dutta, S., Grassia, M., Ajwani, D.: Learning fine-grained search space pruning and heuristics for combinatorial optimization (2020)
Li, X., Zhou, R., Chen, L., Zhang, Y., Liu, C., He, Q., Yang, Y.: Finding a summary for all maximal cliques. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1344–1355. IEEE (2021)
Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25(15), 1891–1897 (2009). https://doi.org/10.1093/bioinformatics/btp311
Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E., Akutsu, T.: A clique-based method using dynamic programming for computing edit distance between unordered trees. J. Comput. Biol. 19(10), 1089–1104 (2012)
Östergård, P.R.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1–3), 197–207 (2002)
Pardalos, P.M., Xue, J.: The maximum clique problem. J. Global Opt. 4(3), 301–328 (1994)
Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, W.K., Choudhary, A.: Fast algorithms for the maximum clique problem on massive graphs with applications to overlapping community detection. Internet Math. 11(4–5), 421–448 (2015)
Peixoto, T.P.: The graph-tool python library. figshare (2014), http://figshare.com/articles/graph_tool/1164194
Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics and visualization. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.), Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. STAT 1050, 20 (2017)
Zhang, C., Zhang, Y., Zhang, W., Qin, L., Yang, J.: Efficient maximal spatial clique enumeration. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 878–889 (2019)
Acknowledgment
This work has been partially supported by the project of University of Catania PIACERI, PIAno di inCEntivi per la Ricerca di Ateneo.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arciprete, A., Carchiolo, V., Chiavetta, D., Grassia, M., Malgeri, M., Mangioni, G. (2023). Geometric Deep Learning Graph Pruning to Speed-Up the Run-Time of Maximum Clique Enumerarion Algorithms. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-21127-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21126-3
Online ISBN: 978-3-031-21127-0
eBook Packages: EngineeringEngineering (R0)