Skip to main content

Paths for Emergence of Superspreaders in Dengue Fever Spreading Network

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1077))

Included in the following conference series:

Abstract

The identification of superspreaders is essential to contain an epidemic, especially when there is not enough information about the disease to develop precautionary measures. Unlike infections caused directly between individuals of the same species, epidemics caused by vectors have well-explored peculiarities. In this direction, we intend to study the networks obtained from the dissemination of dengue to verify, from the results of a simulation of agent based models, if the transmission of this disease follows the 20/80 rule for the proportion of spreaders and infected. We built different transmission networks considering the spread between vectors and humans up to the second generation and we observed that, despite the human-to-human transmission network follow the 20/80 rule, the other networks (human–mosquito, mosquito–mosquito and mosquito–human) did not follow this rule. Varying the density of agents, we show that the phenomenon of superspreading is accentuated with high density of mosquitoes. These characteristics of vector-borne disease networks need to be further explored, as these vectors are highly vulnerable to climate change, and a better understanding of disease spread can help better target dengue epidemic control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam, D.C., Wu, P., Wong, J.Y., Lau, E.H., Tsang, T.K., Cauchemez, S., Leung, G.M., Cowling, B.J.: Clustering and superspreading potential of sars-cov-2 infections in Hong Kong. Nature Med. 26(11), 1714–1719 (2020)

    Article  Google Scholar 

  2. Ball, F., Mollison, D., Scalia-Tomba, G.: Epidemics with two levels of mixing. Ann. Appl. Probab. 46–89 (1997)

    Google Scholar 

  3. Crovello, T.J., Hacker, C.S.: Evolutionary strategies in life table characteristics among feral and urban strains of aedes aegypti (l.). In: Evolution, pp. 185–196 (1972)

    Google Scholar 

  4. Donalísio, M.R., Glasser, C.M.: Vigilância entomológica e controle de vetores do dengue. Revista Brasileira de Epidemiologia 5(3), 259–279 (2002)

    Article  Google Scholar 

  5. Duan, W., Qiu, X., Cao, Z., Zheng, X., Cui, K.: Heterogeneous and stochastic agent-based models for analyzing infectious diseases’ super spreaders. IEEE Intel. Syst. 28(4), 18–25 (2013)

    Article  Google Scholar 

  6. Gubler, D.J.: The economic burden of dengue. Am. J. Tropical Med. Hygiene 86(5), 743 (2012)

    Article  Google Scholar 

  7. Guzman, M.G., Harris, E.: Dengue. Lancet 385(9966), 453–465 (2015)

    Article  Google Scholar 

  8. Halstead, S.B.: Dengue virus-mosquito interactions. Annu. Rev. Entomol. 53, 273–291 (2008)

    Article  Google Scholar 

  9. Hendron, R.W.S., Bonsall, M.B.: The interplay of vaccination and vector control on small dengue networks. J. Theoret. Biol. 407, 349–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. R. Soc. Interface 2(4), 295–307 (2005)

    Article  Google Scholar 

  11. Lima, L., Atman, A.: Impact of mobility restriction in covid-19 superspreading events using agent-based model. Plos One 16(3), e0248708 (2021)

    Article  Google Scholar 

  12. Massad, E., Ma, S., Chen, M., Struchiner, C.J., Stollenwerk, N., Aguiar, M.: Scale-free network of a dengue epidemic. Appl. Math. Comput. 195(2), 376–381 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Moore, C., Newman, M.E.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)

    Article  Google Scholar 

  14. Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B Condensed Matter Complex Syst. 26(4), 521–529 (2002)

    Article  Google Scholar 

  15. Obolski, U., Perez, P.N., Villabona-Arenas, C.J., Thézé, J., Faria, N.R., Lourenço, J.: Mvse: an r-package that estimates a climate-driven mosquito-borne viral suitability index. Methods Ecol. Evol. 10(8), 1357–1370 (2019)

    Article  Google Scholar 

  16. Resende, M.C.D., Ázara, T.M.F.D., Costa, I.O., Heringer, L.C., Andrade, M.R.D., Acebal, J.L., Eiras, Á.E.: Field optimisation of mosquitrap sampling for monitoring aedes aegypti linnaeus (diptera: Culicidae). Memórias do Instituto Oswaldo Cruz 107(3), 294–302 (2012)

    Google Scholar 

  17. Tun-Lin, W., Burkot, T., Kay, B.: Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, australia. Med. Veterinary Entomol. 14(1), 31–37 (2000)

    Article  Google Scholar 

  18. Watts, D.J.: The “new” science of networks. Annu. Rev. Sociol. 30, 243–270 (2004)

    Google Scholar 

  19. Woolhouse, M.E., Dye, C., Etard, J.F., Smith, T., Charlwood, J., Garnett, G., Hagan, P., Hii, J., Ndhlovu, P., Quinnell, R., et al.: Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc. Nat. Acad. Sci. 94(1), 338–342 (1997)

    Article  Google Scholar 

  20. Ximenes, R., Amaku, M., Lopez, L.F., Coutinho, F.A.B., Burattini, M.N., Greenhalgh, D., Wilder-Smith, A., Struchiner, C.J., Massad, E.: The risk of dengue for non-immune foreign visitors to the 2016 Summer Olympic Games in Rio de Janeiro, Brazil. BMC Infect. Diseases 16(1), 186 (2016)

    Article  Google Scholar 

  21. Zeng, Q., Liu, Y., Tang, M., Gong, J.: Identifying super-spreaders in information-epidemic coevolving dynamics on multiplex networks. Knowl. Syst. 229, 107365 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. F. Atman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, L.L., Atman, A.P.F. (2023). Paths for Emergence of Superspreaders in Dengue Fever Spreading Network. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Miccichè, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1077. Springer, Cham. https://doi.org/10.1007/978-3-031-21127-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21127-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21126-3

  • Online ISBN: 978-3-031-21127-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics