Skip to main content

Modularity of the ABCD Random Graph Model with Community Structure

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

  • 1590 Accesses

Abstract

The Artificial Benchmark for Community Detection graph (ABCD) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter \(\xi \) can be tuned to mimic its counterpart in the LFR model, the mixing parameter \(\mu \). In this paper, we investigate various theoretical asymptotic properties of the ABCD model. In particular, we analyze the modularity function, arguably, the most important graph property of networks in the context of community detection. Indeed, the modularity function is often used to measure the presence of community structure in networks. It is also used as a quality function in many community detection algorithms, including the widely used Louvain algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/bkamins/ABCDGraphGenerator.jl/.

  2. 2.

    https://github.com/tolcz/ABCDeGraphGenerator.jl/.

  3. 3.

    https://github.com/bkamins/ABCDGraphGenerator.jl/.

References

  1. Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Math. 5(1–2), 175–196 (2008)

    Article  MATH  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  3. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Combin. Theor. Ser. A 24(3), 296–307 (1978)

    Article  MATH  Google Scholar 

  4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mechan. Theor. Exper. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  5. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Euro. J. Combin. 1(4), 311–316 (1980)

    Article  MATH  Google Scholar 

  6. Chellig, J., Fountoulakis, N., Skerman, F.: The modularity of random graphs on the hyperbolic plane. J. Complex Netw. 10(1), cnab051 (2022)

    Google Scholar 

  7. Chung Graham, F., Lu, L.: Complex Graphs and Networks, no. 107. American Mathematical Society (2006)

    Google Scholar 

  8. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  9. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  Google Scholar 

  10. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  11. Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the abcd random graph model with community structure. arXiv:2203.01480 (2022)

  12. Kamiński, B., Poulin, V., Prałat, P., Szufel, P., Théberge, F.: Clustering via hypergraph modularity. PloS One 14(11), e0224307 (2019)

    Article  Google Scholar 

  13. Kamiński, B., Prałat, P., Théberge, F.: Community detection algorithm using hypergraph modularity. In: International Conference on Complex Networks and Their Applications, pp. 152–163. Springer (2020)

    Google Scholar 

  14. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Netw. Sci. 1–26 (2021)

    Google Scholar 

  15. Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks (2021)

    Google Scholar 

  16. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  Google Scholar 

  17. Lambiotte, R., Schaub, M.: Modularity and dynamics on complex networks (2021)

    Google Scholar 

  18. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)

    Article  Google Scholar 

  19. Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)

    Article  Google Scholar 

  20. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  21. Lichev, L., Mitsche, D.: On the modularity of 3-regular random graphs and random graphs with given degree sequences. arXiv:2007.15574 (2020)

  22. McDiarmid, C., Skerman, F.: Modularity of regular and treelike graphs. J. Complex Netw. 6(4), 596–619 (2018)

    Article  MATH  Google Scholar 

  23. McDiarmid, C., Skerman, F.: Modularity of erdős-rényi random graphs. Random Struct. Algorithms 57(1), 211–243 (2020)

    Article  MATH  Google Scholar 

  24. Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)

    Article  Google Scholar 

  25. Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  26. Prokhorenkova, L.O., Prałat, P., Raigorodskii, A.: Modularity of complex networks models. Internet Math. (2017)

    Google Scholar 

  27. Wormald, N.C.: Generating random regular graphs. J. Algorithms 5(2), 247–280 (1984)

    Article  MATH  Google Scholar 

  28. Wormald, N.C., et al.: Models of random regular graphs. In: London Mathematical Society Lecture Note Series, pp. 239–298 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Prałat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamiński, B., Pankratz, B., Prałat, P., Théberge, F. (2023). Modularity of the ABCD Random Graph Model with Community Structure. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics