Abstract
The Artificial Benchmark for Community Detection graph (ABCD) is a random graph model with community structure and power-law distribution for both degrees and community sizes. The model generates graphs with similar properties as the well-known LFR one, and its main parameter \(\xi \) can be tuned to mimic its counterpart in the LFR model, the mixing parameter \(\mu \). In this paper, we investigate various theoretical asymptotic properties of the ABCD model. In particular, we analyze the modularity function, arguably, the most important graph property of networks in the context of community detection. Indeed, the modularity function is often used to measure the presence of community structure in networks. It is also used as a quality function in many community detection algorithms, including the widely used Louvain algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Math. 5(1–2), 175–196 (2008)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Combin. Theor. Ser. A 24(3), 296–307 (1978)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mechan. Theor. Exper. 2008(10), P10008 (2008)
Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Euro. J. Combin. 1(4), 311–316 (1980)
Chellig, J., Fountoulakis, N., Skerman, F.: The modularity of random graphs on the hyperbolic plane. J. Complex Netw. 10(1), cnab051 (2022)
Chung Graham, F., Lu, L.: Complex Graphs and Networks, no. 107. American Mathematical Society (2006)
Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Nat. Acad. Sci. 104(1), 36–41 (2007)
Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the abcd random graph model with community structure. arXiv:2203.01480 (2022)
Kamiński, B., Poulin, V., Prałat, P., Szufel, P., Théberge, F.: Clustering via hypergraph modularity. PloS One 14(11), e0224307 (2019)
Kamiński, B., Prałat, P., Théberge, F.: Community detection algorithm using hypergraph modularity. In: International Conference on Complex Networks and Their Applications, pp. 152–163. Springer (2020)
Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detection (ABCD)-fast random graph model with community structure. Netw. Sci. 1–26 (2021)
Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks (2021)
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)
Lambiotte, R., Schaub, M.: Modularity and dynamics on complex networks (2021)
Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Phys. Rev. E 80(1), 016118 (2009)
Lancichinetti, A., Fortunato, S.: Limits of modularity maximization in community detection. Phys. Rev. E 84(6), 066122 (2011)
Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
Lichev, L., Mitsche, D.: On the modularity of 3-regular random graphs and random graphs with given degree sequences. arXiv:2007.15574 (2020)
McDiarmid, C., Skerman, F.: Modularity of regular and treelike graphs. J. Complex Netw. 6(4), 596–619 (2018)
McDiarmid, C., Skerman, F.: Modularity of erdős-rényi random graphs. Random Struct. Algorithms 57(1), 211–243 (2020)
Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)
Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)
Prokhorenkova, L.O., Prałat, P., Raigorodskii, A.: Modularity of complex networks models. Internet Math. (2017)
Wormald, N.C.: Generating random regular graphs. J. Algorithms 5(2), 247–280 (1984)
Wormald, N.C., et al.: Models of random regular graphs. In: London Mathematical Society Lecture Note Series, pp. 239–298 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kamiński, B., Pankratz, B., Prałat, P., Théberge, F. (2023). Modularity of the ABCD Random Graph Model with Community Structure. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-21131-7_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21130-0
Online ISBN: 978-3-031-21131-7
eBook Packages: EngineeringEngineering (R0)