Skip to main content

A Biased Random Walk Scale-Free Network Growth Model with Tunable Clustering

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1078))

Included in the following conference series:

  • 1423 Accesses

Abstract

Complex networks appear naturally in many real-world situations. A power law is generally a good fit for their degree distribution. The popular Barabasi-Albert model (BA) combines growth and preferential attachment to model the emergence of the power law. One builds a network by adding new nodes that preferentially link to high-degree nodes in the network. One can also exploit random walks. In this case, the network growth is determined by choosing parent vertices by sequential random walks. The BA model’s main drawback is that the sample networks’ clustering coefficient is low, while typical real-world networks exhibit a high clustering coefficient. Indeed, nodes tend to form highly connected groups in real-world networks, particularly social networks. In this paper, we introduce a Biased Random Walk model with two parameters allowing us to tune the degree distribution exponent and the clustering coefficient of the sample networks. This efficient algorithm relies on local information to generate more realistic networks reproducing known real-world network properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arquam, M., Singh, A., Cherifi, H.: Impact of seasonal conditions on vector-borne epidemiological dynamics. IEEE Access 8, 94510–94525 (2020)

    Article  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  3. Boudourides, M., Antypas, G.: A simulation of the structure of the world-wide web. Sociol. Res. Online 7(1), 9–25 (2002). https://doi.org/10.5153/sro.684

    Article  Google Scholar 

  4. Chakraborty, D., Singh, A., Cherifi, H.: Immunization strategies based on the overlapping nodes in networks with community structure. In: International Conference on Computational Social Networks, pp. 62–73. Springer, Cham (2016)

    Google Scholar 

  5. Cherifi, H., Palla, G., Szymanski, B.K., Lu, X.: On community structure in complex networks: challenges and opportunities. Appl. Netw. Sci. 4(1), 1–35 (2019)

    Article  Google Scholar 

  6. Courtain, S., Leleux, P., Kivimäki, I., Guex, G., Saerens, M.: Randomized shortest paths with net flows and capacity constraints. Inf. Sci. 556, 341–360 (2021)

    Article  MATH  Google Scholar 

  7. Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MATH  Google Scholar 

  8. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

    Article  Google Scholar 

  9. Ibnoulouafi, A., El Haziti, M., Cherifi, H.: M-centrality: identifying key nodes based on global position and local degree variation. J. Stat. Mech. Theor. Exper. 2018(7), 073407 (2018)

    Google Scholar 

  10. Jebabli, M., Cherifi, H., Cherifi, C., Hamouda, A.: User and group networks on YouTube: a comparative analysis. In: 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2015)

    Google Scholar 

  11. Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12(1), 81–95 (1993)

    Article  Google Scholar 

  12. Kumar, M., Singh, A., Cherifi, H.: An efficient immunization strategy using overlapping nodes and its neighborhoods. In: Companion Proceedings of the The Web Conference 2018, pp. 1269–1275 (2018)

    Google Scholar 

  13. Lasfar, A., Mouline, S., Aboutajdine, D., Cherifi, H.: Content-based retrieval in fractal coded image databases. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 1, pp. 1031–1034. IEEE (2000)

    Google Scholar 

  14. Lee, S., Yook, S.H., Kim, Y.: Centrality measure of complex networks using biased random walks. Euro. Phys. J. B 68(2), 277–281 (2009)

    Article  Google Scholar 

  15. Leleux, P., Courtain, S., Guex, G., Saerens, M.: Sparse randomized shortest paths routing with Tsallis divergence regularization. Data Min. Knowl. Disc. 35(3), 986–1031 (2021)

    Article  MATH  Google Scholar 

  16. Lewis, T.G.: Network Science: Theory and Applications. John Wiley & Sons (2011)

    Google Scholar 

  17. Li, M., Liu, R.R., Lü, L., Hu, M.B., Xu, S., Zhang, Y.C.: Percolation on complex networks: theory and application. Phys. Rep. 907, 1–68 (2021). https://doi.org/10.1016/j.physrep.2020.12.003, https://www.sciencedirect.com/science/article/pii/S0370157320304269

  18. Lovász, L., et al.: Random walks on graphs: a survey. Combinatorics Paul Erdos Eighty 2(1), 1–46 (1993)

    Google Scholar 

  19. Messadi, M., Cherifi, H., Bessaid, A.: Segmentation and ABCD rule extraction for skin tumors classification. arXiv:2106.04372 (2021)

  20. Mourchid, Y., El Hassouni, M., Cherifi, H.: A new image segmentation approach using community detection algorithms. In: 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 648–653. IEEE (2015)

    Google Scholar 

  21. Newman, M.: Networks. Oxford University Press (2018)

    Google Scholar 

  22. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Google Scholar 

  23. Orman, G.K., Labatut, V., Cherifi, H.: Towards realistic artificial benchmark for community detection algorithms evaluation. arXiv:1308.0577 (2013)

  24. Orman, K., Labatut, V., Cherifi, H.: An empirical study of the relation between community structure and transitivity. In: Complex Networks, pp. 99–110. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  25. Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and correlation properties of the internet. Phys. Rev. Lett. 87(25), 258701 (2001)

    Google Scholar 

  26. Pastrana-Vidal, R.R., Gicquel, J.C., Colomes, C., Cherifi, H.: Frame dropping effects on user quality perception. In: Proceedings of 5th International WIAMIS (2004)

    Google Scholar 

  27. Rital, S., Bretto, A., Cherifi, H., Aboutajdine, D.: A combinatorial edge detection algorithm on noisy images. In: International Symposium on VIPromCom Video/Image Processing and Multimedia Communications, pp. 351–355. IEEE (2002)

    Google Scholar 

  28. Saramäki, J., Kaski, K.: Scale-free networks generated by random walkers. Phys. A Stat. Mech. Appl. 341, 80–86 (2004)

    Article  Google Scholar 

  29. Serrano, M.A., Boguná, M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72(3), 036133 (2005)

    Google Scholar 

  30. Singh, A., Cherifi, H., et al.: Centrality-based opinion modeling on temporal networks. IEEE Access 8, 1945–1961 (2019)

    Google Scholar 

  31. Toivonen, R., Onnela, J.P., Saramäki, J., Hyvönen, J., Kaski, K.: A model for social networks. Phys. A Stat. Mech. Appl. 371(2), 851–860 (2006)

    Article  Google Scholar 

  32. Vázquez, A.: Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E 67(5), 056104 (2003)

    Google Scholar 

  33. Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the internet. Phys. Rev. E 65(6), 066130 (2002)

    Google Scholar 

  34. Vespignani, A.: Twenty years of network science (2018)

    Google Scholar 

  35. Vitevitch, M.S., Chan, K.Y., Roodenrys, S.: Complex network structure influences processing in long-term and short-term memory. J. Memory Lang. 67(1), 30–44 (2012)

    Article  Google Scholar 

  36. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)

    Google Scholar 

  37. Wu, X., Yu, K., Wang, X.: On the growth of internet application flows: a complex network perspective. In: 2011 Proceedings IEEE INFOCOM, pp. 2096–2104 (2011). https://doi.org/10.1109/INFCOM.2011.5935019

  38. Wuchty, S., Ravasz, E., Barabási, A.L.: The Architecture of Biological Networks, pp. 165–181. Springer US, Boston, MA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vashishtha, R., Singh, A., Cherifi, H. (2023). A Biased Random Walk Scale-Free Network Growth Model with Tunable Clustering. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics