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Community Detection for Temporal )
Weighted Bipartite Networks oo

Omar F. Robledo, Matthijs Klepper, Edgar van Boven, and Huijuan Wang

Abstract Community detection of temporal (time-evolving) bipartite networks is
challenging because it can be performed either on the temporal bipartite network, or
on various projected networks, composed of only one type of nodes, via diverse com-
munity detection algorithms. In this paper, we aim to systematically design detection
methods addressing both network choices and community detection algorithms, and
to compare the community structures detected by different methods. We illustrate our
methodology by using a telecommunications network as an example. We find that
three methods proposed identify evident community structures: one is performed on
each snapshot of the temporal network, and the other two, in temporal projections.
We characterise the community structures detected by each method by an evaluation
network in which the nodes are the services of the telecommunications network, and
the weight of the links between them are the number of snapshots that both services
were assigned to the same community. Analysing the evaluation networks of the three
methods reveals the similarity and difference among these methods in identifying
common node pairs or groups of nodes that often belong to the same community. We
find that the two methods that are based on the same projected network identify con-
sistent community structures, whereas the method based on the original temporal
bipartite network complements this vision of the community structure. Moreover,
we found a non-trivial number of node pairs that belong consistently to the same
community in all the methods applied.
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1 Introduction

Networks [10] have been used to represent complex systems. In a network, nodes
represent the elements of a system, and their interactions or relations are represented
by links. Community detection has been a fundamental network characterisation
method to discover communities of nodes where nodes within a community are more
similar or more strongly connected, whereas two nodes from different communities
are less similar or weakly connected.

The detection of disjoint communities has been broadly studied, especially for
static networks [4—-6, 12]. Modularity [7], defined by Newman and Girvan, is one clas-
sic quantification of the quality of a partition of network nodes into disjoint groups,
among many other possibilities. A partition of network nodes that maximises the
modularity is recognised as the community structure of the network, and the corre-
sponding maximal modularity is called the modularity of the network. Algorithms
to detect communities that optimise the modularity have been widely proposed and
applied; e.g., the greedy techniques proposed by Newman [8], and Blondel et al. [3].
These algorithms do not require the number of communities as an input.

Many real-world networks evolve over time. In a physical (virtual) contact net-
work, two individuals are connected only when there is a face-to-face (email) contact
instead of constantly. Community detection algorithms for static networks could be
applied to detect the communities at each snapshot of the temporal (time evolv-
ing) network independently. Algorithms have been further developed for temporal
networks to enhance the stability of the community structure over time, especially
between two consecutive time steps [13]. Many real-world networks are static bipar-
tite networks, where the nodes can be divided in two disjoint sets (such as authors
and papers), and links (authorship relations) can only connect nodes from different
sets. Bipartite graphs have been projected to networks composed of only one set of
nodes in various ways, and classic static network community detection algorithms
can be applied to the projected networks. Moreover, the definition of modularity has
been further updated for static bipartite networks [2]. Correspondingly, algorithms to
detect communities in a static bipartite network that optimised the bipartite network
modularity have been designed [14].

A challenging problem is the community detection of a temporal weighted bipar-
tite network [11] (e.g., a telecommunications network that records the data transfer
between services and base stations, over time). For such networks, communities
can be detected by diverse combinations of the network (original network or pro-
jected ones) and community detection algorithms (to detect the community structure
per snapshot independently, or stably overtime). Each detection method identifies
the communities, with possibly a specific community definition. The foundational
questions are two. First, how to systematically design detection methods that utilise
existing network projection methods and community detection algorithms, and sec-
ond, and most importantly, how to compare the community structures detected by
different methods, so that we can have an integrated overview.
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In this work, we develop methodologies to address these two questions, illustrated
by using a telecommunications network as an example. We introduce a basic frame-
work to design community detection methods that systematically consider diverse
network or network projection choices, and, correspondingly, various community
detection algorithms. Three of the proposed methods recognise relatively evident
community structures, at least in a fraction of network snapshots. To compare the
community structures identified by these algorithms, we propose to construct an
evaluation network that characterises the evident community structures detected by
a method. By analysing the evaluation networks of these three methods, we obtain
insights regarding, e.g., when different methods are applied, whether the frequency
that a node pair belong to the same community is consistent, and whether the group of
nodes that frequently belong to the same community differ. Our work may shed light
on how to utilise existing community detection and network projection algorithms
to obtain a multi-perspective vision of the community structure(s) of a network.

This paper is organised as follows. In Sect.2, we design community detection
methods. In Sect. 3, we evaluate and compare the community structures found by
these methods. Finally, we present our conclusions in Sect. 4.

2 Methods

In this section, we propose methods to detect the community structure of a tempo-
ral bipartite weighted network from different perspectives. We start by introducing
the temporal bipartite network. Second, we propose methods to project a temporal
bipartite network to one or multiple networks composed of only one type of nodes.
Finally, we briefly review the community detection algorithms that will be applied
to the temporal bipartite network and to the projected networks, respectively.

2.1 Weighted Temporal Bipartite Network

Static bipartite networks are a type of networks in which the nodes can be divided
in two disjoint sets, S, of size S, and U, of size U, and links (£) can only connect
nodes from different sets. A weighted bipartite network can be represented by its
biadjacency matrix R, an S x U rectangular matrix in which each element R;,
represents the weight between nodes s and u.

Take the data transference between services and base stations in a telecommu-
nications network as an example. It could be represented as a temporal weighted
bipartite network (see Fig.1). A temporal bipartite network observed or measured
at discrete time T = [1, 2, ..., T'], and composed of a set S of S services and a set U
of U base stations can be represented by a S x U x T temporal biadjacency matrix
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Fig. 1 Example of a temporal bipartite network at 7 = 4 time steps

Table 1 Basic properties of the bipartite telecommunications network

Number of services (S) 253
Number of base stations (U) 5166
Time window length (T') in steps 1440
Time window length in days 60
Time resolution per step l1h

‘R. Each element R , ; represents the amount of data that has been transferred from
service s to base station u at time ¢, where s € [1,S], u € [1,U] and ¢t € [1, T].
Basic properties of this telecommunications network can be found in Table 1.

2.2 Projections of Weighted Temporal Bipartite Network

Static bipartite networks have been projected to networks that contain only one type
of nodes. The projected network, resulted from a given projection method, captures
a specific relation among the same type of nodes. Such projection is motivated by
the following. First, we might be interested in detecting communities within one
type of nodes. Second, classic community detection methods can be further applied
to a projected network. Projected networks are usually weighted networks, with the
weights representing, e.g., a given kind of similarity between nodes. In this section,
we will introduce diverse ways of projecting a temporal bipartite network, either per
snapshot or as a whole, resulting in 7 projected networks or one projected network
respectively. To illustrate our method, we project the temporal telecommunications
network to networks among the services.

Static projection based on average cosine similarity. First, we explain a basic
method that projects the temporal network as a whole to a static network of services.
The volume of data transfer between a service i; and a base station j per step over
time can be represented as a time series wj, j, where each element w;, j(t) = R, j¢
describes the volume of the data transfer between service i; and station j at time
t. In this projection, the weight w;, ;, between two services i; and i, is the average
cosine similarity between the two services’ data transfer w;, j and wj, ; with a base
station j. Mathematically,
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where U;, ;, represents the set of base stations that have transferred data from both
nodes i, and i, at least once in T. A large weight ﬂ?il .i, between two services implies
that they are demanded by a base station over time in term of traffic in a similar way.

Temporal projection based on number of common neighbours. Temporal pro-
jection refers to methods that project each snapshot G(¢) of the temporal bipartite
network G to a network of the services. The first temporal projection method is
defined as follows. In the projected network of G(¢), two services are connected if
they share any common neighbours in G(z), and the corresponding weight w;, ;, (¢)
is the number of common neighbours they have in G(¢). That is,

Wi, i, (1) = Z L, j,o Wi, )00 2)
jeU

where the indicator function 1yy,, j. /W, j,n>0 €quals one when the amount of data
transfer W(iy, j, t) and W(iy, j, t) are both positive, or equivalently when j is a
common neighbour for i and i, at time 7. A large weight w;, ;,(f) between two
services indicates that both services have traffic with a large number of stations in
common at time .

Temporal projection based on the average geometric mean. Ateach time step ¢,
we may wonder whether two services tend to have a large amount of data transfer with
acommon station, beyond their number of common neighbours. Hence, in the second
temporal projection method, the weight w;, ;,(¢) between two services projected
from G(¢) is defined as the geometric mean \/wj, ;(¢) - w;,, ;(¢) of their traffic with
a common neighbour j, averaged over all common neighbours. Specifically,

Zje[U,W(i],j,t)W(iz,j,t)>0 VWi (1) - wi, j(F)

wj, i, (1) =
o 2 jev Wi oW, jn=0

. 3)

A large weight Wy, ;,(¢) between two services indicates that they tend to have a
large amount of traffic with a station in common at time .

2.3 Community Detection Methods

We adopt the concept of community and community detection algorithms that orig-
inated from modularity optimisation proposed by Newman [9] for networks of one
type of nodes. We will illustrate how classic concepts and algorithms can be applied
to detect the community structure of a weighted temporal bipartite network system-
atically.
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2.3.1 Community Detection of Projected Networks

Classic community detection algorithms for static networks can be applied to the
static projected network and the temporal projected network at each time step, to
detect the communities of projected networks.

Consider first an undirected weighted network G that is composed of one type of
nodes. It can be represented by a weighted adjacency matrix A. Given a weighted
network and a partition of all the nodes into non-overlapping communities, the quality
of this community partition can be measured by the modularity

1 ki -k;
0=y [A,,j - ZLJ}SC,,C,, )

ij

where k; = ) j A, j is the sum of the weights of all the links connected to node i,
so-called node strength; c; is the label of the community to which node i belongs;
the Kronecker delta 4, ., = 1, if ¢; = ¢, and 0 otherwise; and L = % Zi,j A;jis
the total weight in the network.

The modularity of a partition describes the extent to which the weight of links
within each community is bigger than the weight of those between communities. The
modularity Mod(G) € [0, 1] of a network is the maximal modularity that could be
obtained via community detection. Computing the modularity of a network is an NP-
hard problem. We adopt the classic Louvain method [3] to obtain the approximate
optimal modularity of a static network and its corresponding community partition.

The Louvain method [3]. This method starts with every node in its own commu-
nity. For each node, it checks whether the modularity increases or not when changing
its community to that of one of its neighbours. If there is an increase in modular-
ity, then the community of that node is changed. This assignment step is repeated
until there is no increase in modularity. The final community structure is considered
as the optimal partition and the corresponding modularity is the modularity of the
network. We will apply the Louvain method to detect the community structure of
the static projected network and of the temporal projected network at each time ¢
independently.

Stabilised Louvain method. To maintain the consistency of the community struc-
tures at two consecutive snapshots, we will also apply the stabilised Louvain method
[1] to the temporal projected networks. Aynaud et al. modified the Louvain method,
such that it considers the resulting community partition from the previous snapshot as
the initialisation, whereas the modularity optimisation procedure remains the same.

2.3.2 Community Detection of a Temporal Bipartite Network

In the previous section, we have shown how to detect the communities of a temporal
bipartite network by applying classic community detection methods to its projected
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Table 2 Summary of the community detection methods proposed that combine the network and
community detection algorithm differently. The methods that find evident community structures
are highlighted in bold

Network CD algorithm Method name

Bipartite network Bi-Louvain BiLouvain

Cosine similarity static projection Louvain CS-Louvain

Common neighbours temporal projection | Louvain CN-Louvain
Stabilised Louvain CN-stabilised

Geometric mean temporal projection Louvain Geometric-Louvain
Stabilised Louvain Geometric-Stabilised

networks. However, we can also apply a community detection algorithm for static
bipartite networks to each snapshot G(¢) of the temporal bipartite network.

The modularity definition for a static bipartite weighted network has been adapted
by Barber [2] by redefining the null model to which we compare the weights within
each community. We can express it as

U
E Ri'_ ’ / (Sc-c-v 5
: [ sJ L ] i,Cj ( )

1 j=1

Q:

S

™~ =

1

which considers the random weighted bipartite network with the same node strength
as the given bipartite network as the null model.

The Bi-Louvain method [14]. Zhou et al. have proposed this community detec-
tion algorithm for static bipartite networks based on the Louvain method and mod-
ularity definition (5).

In summary, combinations of the aforementioned network choices, projected or
not, and community detection algorithms lead to in total six community detection
methods, as shown in Table 2.

3 Results

In this section, we evaluate the communities of services detected by the methods
that we have proposed. First, we study to what extent the community structures
found are evident through their modularity. Second, we investigate how the evident
community structures (partition of services) detected by diverse methods provide a
complementary or consistent vision.
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Fig. 2 Representation of the a modularity and b number of communities of each of the methods

3.1 Modularity

Only the BiLouvain, Geometric-Louvain and Geometric-Stabilised methods have
found evident community structure, i.e., the modularity is higher than 0.3 in, at
least, a portion of the snapshots. Hence, the other methods will not be discussed
further. Each of the three considered methods, partitions the nodes (services) into
communities for each snapshot of the bipartite temporal network, or of the geometric
mean temporal projection. In Fig.2, we show the distribution of the modularity in a
snapshot. The BiL.ouvain method shows the largest modularity of the three methods.
For each of the three methods, we will further analyse the community structures in
snapshots when the corresponding modularity is larger than 0.3.

3.2 Community Structure Comparison

We aim to compare the evident community structures found by these methods. In
order to do that, we define an evaluation network to characterise the evident com-
munity partitions detected by a method.

3.2.1 Evaluation Network

An evaluation network contains the set S of services as nodes, and is constructed
based on the community structures detected by a given method in every snapshot.
Two nodes are connected if they have been assigned to the same community in, at
least, one snapshot in which the modularity is larger than 0.3. The weight of the link
is the total number of snapshots in which both nodes belong to the same community
and the modularity is larger than 0.3. We build a weighted static evaluation network
for each of the three methods. The weight distributions of the three evaluation net-
works are shown in Fig. 3. The average link weight in BiLouvain evaluation network
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Fig. 3 Link weight
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is evidently smaller than that in Geometric-Louvain and Geometric-Stabilised eval-
uation networks. This could be due to the larger number of communities detected by
BiLouvain. This could also imply that the community structure detected by BiLou-
vain changes more significantly over time. The average link weight in the Geometric-
Stabilised evaluation network is slightly larger than that in Geometric-Louvain eval-
uation network, supporting that Stabilised Louvain detects more stable community
structure over time than Louvain.

3.2.2 Recognition Rate

First, we aim to understand whether two nodes that more frequently belong to the
same community according to one method, or, equivalently, have a high weight in
the corresponding evaluation network, also tend to belong to the same community
more often according to another method. This is evaluated via the recognition rate
between two methods, defined as follows. We rank the links in each evaluation
network according to their weights. The set of fL links, with f being the ratio of
links considered, with the highest link weights in the evaluation network derived
from, e.g., the BiLouvain (Geometric-Louvain) method can be represented as J J? L

(JfGL), where L = (g) is the maximal possible number of links among S services,
and f € [0, 1]. The top f fraction recognition rate between, e.g., (the evaluation
networks of) BiLouvain and Geometric-Louvain methods is defined as rp; ¢ (f) =
PN It

|JBE|
JPE and J¢* normalised by the number of links f L in each set.

The link densities of the evaluation networks are all slightly above 0.7. Therefore,
we compute the recognition rate for f € (0, 0.7]. The top f recognition rate between
random ranking of links and any ranking of links is f. As we can see in Fig.4, the
top f recognition rate between any two community detection method is higher than
f, suggesting that all the evaluation networks share similarity in identifying similar
set of links with a large weight. Moreover, the co-occurrence between the top links
in Geometric-Louvain and Geometric-Stabilised is the highest. This is in line with
the fact that Geometric-Louvain and Geometric-Stabilised use the same network

, which measures the number of links in common between the two sets
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Fig. 5 Sub-evaluation network composed of 50 links with the largest weights derived by a BiLou-
vain, b geometric-Louvain and ¢ geometric-stabilised respectively. All nodes are coloured in blue
except those in the largest, second largest, and third largest component in the geometric-Louvain
sub-evaluation network, which are coloured in orange, green and red, respectively

projection for community detection. The visualisation of the sub-evaluation network
composed of the top 50 links with the largest link weight derived by each method in
Fig.5 reveals the same. For example, nodes in the largest, second largest, and third
largest components of the Geometric-Louvain sub-evaluation network (coloured in
orange, green and red respectively) are more likely to appear, or to be connected, in
the Geometric-Stabilised sub-evaluation network in comparison to BiL.ouvain.

3.2.3 Persistent Community Component

Besides the similarity of two evaluation networks in identifying links with large
weight, measured by the recognition rate, we explore further the similarity between
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Table 3 Number of snapshots in which all the nodes in the indicated component (or clique) in the
sub-evaluation network with 50 links belong to the same community

Method BiLouvain Geometric-Louvain Geometric-stabilised
Giant component 11 174 95

Second largest 124 372 336

component

Largest clique within | 141 311 472

giant component

two methods in identified groups of nodes that frequently belong to the same com-
munity, so-called persistent community component. Finding the persistent groups of
size m requires the counting of the number of snapshots in which each of the (]i )
groups belong to the same community, according to a given community detection
method. Its computational complexity is high and it is difficult to be simplified when
the community structure changes over time.

Identifying whether components in the aforementioned sub-evaluation network,
composed of links with the highest weight, are persistent, could be an intuitive and
insightful start. The motivation is that a group of nodes may frequently belong to the
same community if pairs of them often belong to the same community.

The number of snapshots in which all the nodes in the largest (second largest)
component of a sub-evaluation network fall into the same community is shown in
Table 3. We find that nodes in the largest component of the BiLouvain sub-evaluation
network belong to the same community less frequently compared to that of other sub-
evaluation networks, although the largest component of the BiL.ouvain sub-evaluation
network is denser. This difference in frequency is evident, especially in view that
the total number of snapshots that have a modularity larger than 0.3 is far larger
when BiLouvain is applied. For the Geometric-Louvain and Geometric-Stabilised
methods, nodes in the biggest component and, especially, in the second biggest com-
ponent belong to the same community in up to almost a quarter of the snapshots that
have an evident community structure. The same observation holds when examining
whether nodes in the second largest component and the largest clique within each
giant component are persistent community components. This difference could be
due to the lower average link weight in the BiLouvain sub-evaluation network, and
the highly dynamic community structure detected by BiLouvain over time.

We find that each component in Fig. 5 tends to be persistent and composed of a spe-
cific type of services, e.g., related to social networks or provided by the same brand.
The biggest component of the Geometric-Stabilised method, though persistent, is an
exception, containing various types of services.
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4 Conclusions

In this paper, we define multiple methods to detect community structures of a tem-
poral weighted bipartite network. We study how the partitions found by different
community detection methods align or complement each other, illustrated via a
telecommunications network. The three community detection methods that find evi-
dent community structures are performed either on the original bipartite temporal
network or on a temporal projection; i.e., projecting each temporal network snapshot
independently. To compare them beyond their difference in community definition,
we define an evaluation network to characterise the community structures found by
each method, in which the nodes are the services of the telecommunications network,
and the weight of the links between them is the number of snapshots in which both
services belong to the same community. Then, we compare which nodes are the ones
that are most commonly clustered together, first in terms of node pairs through the
recognition rate, and then in terms of groups of nodes by studying the components
of the sub-evaluation network with the highest-weight links. The two methods that
partition the network based on the same temporal projection, using Louvain and
stabilised Louvain, respectively, identify consistent community structures, whereas
the third method, based on the original temporal bipartite network, provides a com-
plementary perspective of the community structure. Moreover, we find that all three
methods share a non-trivial number of common node-pairs that are often in the same
community.

Our methodology, exemplified by a limited choice of candidate algorithms and
one network, is the starting point to explore the multi-perspective vision of the com-
munity structure of a temporal bipartite network. It could be further improved by
investigating, e.g., the time series associated to each link of an evaluation network
that records the time stamps when two nodes belong to the same community, and
networks with known ground truth community structure.

Acknowledgements We thank NExXTWORKX, a collaboration between TU Delft and KPN on
future telecommunication networks, for the support.
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