
 
 

Delft University of Technology

Drug Trafficking in Relation to Global Shipping Network

Leibbrandt, Louise ; Zhang, Shilun; Roelvink, Marijn; Bergkamp, Stan ; Li, Xinqi; Bisschop, Lieselot;
Wingerde, Karin van; Wang, Huijuan
DOI
10.1007/978-3-031-21131-7_52
Publication date
2023
Document Version
Final published version
Published in
Complex Networks and Their Applications XI - Proceedings of The 11th International Conference on
Complex Networks and Their Applications

Citation (APA)
Leibbrandt, L., Zhang, S., Roelvink, M., Bergkamp, S., Li, X., Bisschop, L., Wingerde, K. V., & Wang, H.
(2023). Drug Trafficking in Relation to Global Shipping Network. In H. Cherifi, R. N. Mantegna, L. M. Rocha,
C. Cherifi, & S. Micciche (Eds.), Complex Networks and Their Applications XI - Proceedings of The 11th
International Conference on Complex Networks and Their Applications: COMPLEX NETWORKS
2022—Volume 2 (pp. 675-686). (Studies in Computational Intelligence; Vol. 1078). Springer.
https://doi.org/10.1007/978-3-031-21131-7_52
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-21131-7_52
https://doi.org/10.1007/978-3-031-21131-7_52


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Drug Trafficking in Relation to Global
Shipping Network

Louise Leibbrandt, Shilun Zhang, Marijn Roelvink, Stan Bergkamp,
Xinqi Li, Lieselot Bisschop, Karin van Wingerde, and Huijuan Wang

Abstract This paper aims to understand to what extent the amount of drug (e.g.,
cocaine) trafficking per country can be explained and predicted using the global
shipping network. We propose three distinct network approaches, based on topo-
logical centrality metrics, Susceptible-Infected-Susceptible spreading process and a
flow optimization model of drug trafficking on the shipping network, respectively.
These approaches derive centrality metrics, infection probability, and inflow of drug
traffic per country respectively, to estimate the amount of drug trafficking. We use
the amount of drug seizure as an approximation of the amount of drug trafficking per
country to evaluate our methods. Specifically, we investigate to what extent different
methods could predict the ranking of countries in drug seizure (amount). Further-
more, these three approaches are integrated by a linear regression method in which
we combine the nodal properties derived by each method to build a comprehensive
model for the cocaine seizure data. Our analysis finds that the unweighted eigen-
vector centrality metric combined with the inflow derived by the flow optimization
method best identifies the countries with a large amount of drug seizure (e.g., rank
correlation 0.45 with the drug seizure). Extending this regression model with two
extra features, the distance of a country from the source of cocaine production and
a country’s income group, increases further the prediction quality (e.g., rank cor-
relation 0.79). This final model provides insights into network derived properties
and complementary country features that are explanatory for the amount of cocaine
seized. The model can also be used to identify countries that have no drug seizure
data but are possibly susceptible to cocaine trafficking.
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1 Introduction

Complex networks have been widely used to represent real-world complex sys-
tems, where nodes denote the components and links represent relations or interac-
tion between components. Significant contributions have been made to characterize
complex networks and to understand the effect of a network on a dynamic process
unfolding on the network. Diverse nodal centrality metrics [1, 2] have been pro-
posed to measure various topological properties of a node. Nodal centrality metrics
have been applied in general to estimate the importance of nodes in their function,
e.g., to identify nodes with high spreading capacity and to select nodes to be immu-
nizedwhen a virus is prevalent [3–5]. Spreadingmodels such as Susceptible-Infected
(SI) model and Susceptible-Infected-Susceptible (SIS) model have been intensively
studied [6, 7] to model the spread of epidemic and information on networks. Deep
understanding has been achieved regarding how the underlying network topology
affects a spreading process, how to predict and control a spreading process on a
network [8].

Shipping networks play a crucial role in world trade as around 80% of global trade
by volume is carried by sea.1 From the aspect of network topology, prior literature
explored the overall structure of the global shipping network, revealing its scale-
free property [9] and modular structure [10]. Li et al. investigated the relationship
between the centrality of nodes in the global shipping network and the economy of
corresponding areas [11].Global shipping network has been found to have “economic
small-world” characteristic [12], i.e., with high transportation efficiency and low
wiring cost. Some other efforts have been devoted to model dynamic processes on
shipping networks, e.g., marine species invasion process [13, 14]. Nonetheless, how
illicit trafficking, like drug trafficking, is linked to the shipping network from the
angle of network science remains unexplored.

In this paper, we investigate how to explain and predict drug (e.g., cocaine) traf-
ficking using the global shipping network. The amount of drug seizure in each country
is used as an approximation of the amount of drug trafficking to evaluate our meth-
ods.We propose three types of network-basedmethods. Thesemethods are evaluated
via their capability to predict the ranking countries in drug seizure (amount) thus to
identify countries with a large drug seizure. The first method uses traditional nodal
centrality metrics of a country in the shipping network to estimate the volume of
drugs seized in the country [15]. Secondly, we employ the SIS spreading model on
the shipping network. The infection probability of a node (country) in the meta-
stable state is derived to indicate a country’s drug seizure. In the third method, we
formulate drug trafficking as the optimal flow on the shipping network, where the
number of links to route the traffic from countries that produce drugs and countries
that consume drugs is minimized. The inflow to a country is used to estimate the
drug seizure of that country.We finally combine the above threemethods using linear
regression, showing a better prediction of the ranking of countries in drug seizure
and identifying key factors that explain the amount of drug seizure per country. This

1 https://unctad.org/webflyer/review-maritime-transport-2018.

https://unctad.org/webflyer/review-maritime-transport-2018
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linear regression model has also been extended by including two extra country-level
properties, namely the distance of a country from the source of cocaine produc-
tion and a country’s income group/level. We find that these extra features could
further improve the prediction quality and the essential role of network-based prop-
erties.

The paper is structured as follows. Section2 introduces the construction of the
shipping network and drug seizure data. Section3 describes and evaluates our meth-
ods. Section4 summarizes our key findings.

2 Datasets

Shipping Network Construction. The Global Liner Shipping Network has been
derived from service routes data of the world’s top 100 liner shipping companies in
2015, by mapping each service route as a complete graph where any two ports in
the service route were connected via a link [16, 17]. It is composed of 977 unique
ports and 16,680 inter-port connections. We construct the country-level shipping
network as follows. Based on the country code of each port extracted from theMarine
Traffic ports database [18], each port can be mapped to the country it belongs to.
In the unweighted shipping network, nodes are the countries, and two nodes i and
j are connected by a link, i.e., ai j = 1 in the adjacency matrix A if at least two
ports from the two countries respectively have an inter-port connection, otherwise
ai j = 0. Aweighted network can be further constructed by having the same topology
as the unweighted network and associating each link with a weight wi j that equals
the total number of inter-port connections between countries i and j . The weight
wi j = 0 if there is no inter-port connection between i and j . Both networks have
N = 174 countries and L = 2743 links in 2015 and are relatively stable over time.
The unweighted network is visualized in Fig. 1.

DrugSeizureData. The drug seizure data is from theUnitedNationsOffice onDrugs
and Crime annual drug seizures report [15]. The data contains reports for 144 unique
countries between the years 2012–2016.We extract all entries that pertain to the drug
group of Cocaine-type and can reliably be converted to kilogram equivalents. The
average amount of drug seizures per year per country over 2012–2016 is considered.
There is an overlap of N = 110 countries between the shipping network and the drug
seizure data.

Hence, we consider the sub-shipping weighted and unweighted networks, that
contain these 110 common countries as nodes and their connections in this paper.
Both shipping networks contain N = 110 countries and L = 1794 links and the
average (standard deviation) of link weights is 6.1 (13.4) in the weighted network.
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Fig. 1 Unweighted global liner shipping network. Each node represents a country (or district)

3 Methods

Firstly,wepropose three distinct network based approaches tomodel the drug seizure.
Each approach uses the shipping network as main ingredient and creates an output
nodal property that is meant to be representative of the drug seizure of a country.

We evaluate the quality of all approaches in predicting the ranking of countries in
drug trafficking/seizure amount via two measures: Spearman’s rank correlation and
the recognition rate between an output nodal property and drug seizure of a country.
The top f recognition rate rφv( f ) is defined as

rφv( f ) = |Rφ

f ∩ Rv
f |

|Rφ

f |
,

where Rφ

f is the set of f percentage of countries that have the highest drug seizure
amount and Rv

f is the set of f percentage of countries that have the highest (low-
est2) value in property v. The recognition rate rφv( f ) equals the size of the overlap
between Rφ

f and Rv
f , or the number of common nodes, normalized the size of each

set |Rφ

f | = |Rv
f | = N f . We consider f = 10, 20 and 40% as examples. Using these

two measures, we aim to understand the capability of our approaches in identifying
the countries with a high drug seizure.

2 When drug seizure and the nodal property are supposed to be negatively correlated.
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3.1 Topological Metrics

Our first approach uses each nodal centrality metric derived from the shipping net-
work to estimate the drug seizure per country. We are interested in which metric has
the highest correlation with drug seizure and is therefore most representative of drug
seizure. We will briefly introduce our four chosen centrality metrics, our reasoning
and hypotheses for their correlation with drug seizure.

• Degree di of a node i is the number of links incident to the node i . The degree of a
country represents the number of countries directly connected to it in the shipping
network.

• Betweenness Centrality bi of a node i in the unweighted shipping network is the
number of shortest paths that traverse the node i between all possibly node pairs
[19, 20].

• Clustering Coefficient ci of a node i equals the number of links among the neigh-
bors of the node normalized by

(di
2

)
. It tells the link density among the di neighbors

of node i .
• Eigenvector Centrality. The unweighted (weighted) eigenvector centrality of a
node is the principal eigenvector component and the principal eigenvector is the
eigenvector corresponds to the largest eigenvalue of the unweighted (weighted)
adjacency matrix A (W ). A country with a high eigenvector centrality tends to
connect to many countries who themselves have a high connection (eigenvector
centrality).

We suspect that countries with a high degree, betweenness or Eigenvector centrality
are susceptible to large amount of drug trafficking due to their good network con-
nection, infrastructure and the corresponding flexibility to change modus operandi
(e.g., shifting drugs to another port). In contrary, countries with a large clustering
coefficient could be less susceptible since they do not have a large degree and drug
trafficking can be through their mutually connected neighbors without the need of
traversing the country itself.

Results. The Spearman’s rank correlation and recognition rate between the drug
seizure and each chosen centrality metric is given in Table1. We find that all metrics
have a statistically significant (p < 0.01) rank correlation with drug seizure, and the
sign of each correlation is in line with our hypothesis for the corresponding metric.
All centrality metrics can contribute to the identification of countries with large
seizure since their recognition rate rφv( f ) > f , thus is better than that of a random
guess.We find that the unweighted eigenvector centrality metric provides the highest
correlation in strength, however theweighted eigenvector centrality and betweenness
leads to the highest recognition rate when f = 20% and f = 40% respectively.
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Table 1 Evaluation of prediction performance of topological metrics, SIS infection probability,
and inflow (derived from the flow optimization model), via rank correlation and recognition rate

Metric Corr. p-value rφv(10%) rφv(20%) rφv(40%)

Degree 0.39, < 0.01 0.27 0.41 0.57

Betweenness 0.34, < 0.01 0.27 0.36 0.61
Clustering −0.35, < 0.01 0.27 0.36 0.60

Eigenvector (unweighted) 0.40 < 0.01 0.27 0.41 0.59

Eigenvector (weighted) 0.39 < 0.01 0.27 0.50 0.52

SIS infection prob.
(unweighted net)
τ = 0.045

0.41 < 0.01 0.27 0.41 0.59

SIS infection prob.
(weighted net) τ = 0.021

0.40 < 0.01 0.27 0.41 0.59

Inflow 0.33 < 0.01 0.36 0.36 0.57

The best performance of each category is in bold

3.2 SIS Spreading Process

We have shown recently that the SIS epidemic spreading model can be generalized
to model the contagion of traffic congestion at an airport on an airline network and
the infection probability of an airport can be used to estimate the probability of
congestion at the airport [21]. Inspired by this, we propose our second approach:
model the contagion of drug trafficking as an SIS spreading process on the shipping
network and uses the infection probability of a country in the meta-stable state to
estimate the ranking of countries in drug seizure. We will briefly introduce the SIS
model, method to derive infection probabilities and evaluate this approach.

SIS Model. The homogeneous SIS model is defined as follows. At any time t , a
node is either susceptible or infected. A susceptible node can be infected by each of
its infected neighbors with an infection rate β and each infected node recovers to be
susceptible again with a recovery rate δ. Both the infection and recovery processes
are independent Poisson processes. For a given network upon which the SIS process
is deployed, a critical epidemic threshold τc exists. When the effective infection rate
τ = (β/δ) > τc, a non-zero fraction of infected nodes persists in the meta-stable
state. When τ < τc, the epidemic dies out.

Mean-Field Approximation of SIS Model. We derive nodal infection probabilities
in themeta-stable state viaN-IntertwinedMean-FieldApproximation (NIMFA) [22].
NIMFA is chosen as it preserves the network topology in its governing equations,
coupling the infection probability of neighboring nodes. It assumes that the states
of neighboring nodes are uncorrelated. Under NIMFA, the governing equation for a
node i in our heterogeneous SIS spreading model is
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dvi (t)

dt
= −δvi (t) + (1 − vi (t))

N∑

j=1

βwi jv j (t), (1)

where vi (t) is the infection probability of node i at time t , and βwi j is the infection
rate associated to the link (i , j) with weight wi j . The time derivative of the infection
probability vi (t), is determined by two competing processes (a) while node i is
infected, node i is cured at rate δ and (b) while node i is susceptible, each infected
neighbour j infects node i with a rate βwi j . In the meta-stable state, dvi (t)

dt = 0, for
any i ∈ N . Hence, the infection probability of each node in this case, vi∞, can be
derived by solving the equations δvi∞ + (1 − vi∞)

∑N
j=1 βwi jv j∞ = 0. The trivial

all-zero solution corresponds to the absorbing state where all nodes are susceptible.
Both the unweighted and weighted shipping networks will be considered. When

the underlying network is the unweighted, the governing Equation (1) should be
updated by replacing the weighted adjacency matrix element wi j by the unweighted
adjacency matrix element ai j .

Results. In Fig. 2, the Spearman’s rank correlation and recognition rate between the
infection probability and drug seizure amount are plotted as a function of the effective
infection rate τ , when the underlying network is the unweighted shipping network.
The Spearman’s rank correlation varies only slightly when the effective infection rate
is small around the critical epidemic threshold τc = 0.020. This is in linewith the the-
oretical and empirical finding in [23] that the ranking of nodal infection probability
tends to change more with τ , when τ is small. The top f recognition rate is insensi-
tive of the effective spreading rate τ . The same trends have been observed when the
underlying network is the weighed shipping network. The maximal rank correlation
and recognition rate that can be reached by choosing τ (just above the threshold) are
summarized in Table1. We also find the infection probability of a country derived
from the unweighted (weighted) shipping network at the optimal effective infection
rate, is strongly correlated with the unweighted (weighted) principal eigenvector
component derived in Sect. 3.1, with a correlation coefficient around 0.99. This is in
line with the theoretical proof that when the effective infection rate is just above the
epidemic threshold, the meta-stable state infection probability of a node, obtained
by NIMFA is proportional to the principal eigenvector component of the adjacency
matrix A (W) [24]. By tuning the effective infection rate β to optimize the eval-
uation metrics, we improve the performance marginally compared to the principal
eigenvector component.

3.3 Flow Optimization Model

For this method we view transnational drug trafficking as an economic process
where drugs go from production countries to consumption countries through a chain
of intermediaries [25]. This is motivated by two main factors that contribute to
Cocaine trafficking. The first is that the price of Cocaine is largely attributable to
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(a) (b)

Fig. 2 a Spearman’s rank correlation (and the average infection probability over all nodes) and b
recognition rates between nodal infection probability and drug seizure as a function of the effective
infection rate. The underlying network is the unweighted shipping network

risk compensation[25]; in an economic system, distributors may try to minimize
the number of links used to transport drugs from supply countries to consumption
countries. The second factor is that a large portion of Cocaine trafficking uses the
shipment network as way of transportation [26]. We therefore create an optimization
problem in which we minimize the number of links used to transport drugs in our
shipping network whilst adhering to constraints that model the supply and demand
for each country. The total inflow at each country will be used to predict the ranking
of countries in drug seizure.

The following steps will be taken to derive the (normalized) supply and demand
per country. Firstly, we extract the amount of cocaine production si of each country
i in 2012 from [27] and the drug usage ui (as % of population) of each country i
from [28]. We define the normalized supply of a country i as s∗

i = si∑Ns
i=1 si

, where Ns

is the number of supply countries. Similarly, the normalized demand of a country i
is defined as u∗

i = ui∗mi∑Nu
i=1 ui∗mi

, where mi is the population of country i and Nu is the

number of consumption countries. The total normalized supply (or demand) of all
countries is one.

Countries of supply or consumption may not have any port, thus not exist in our
shipping networks. Hence, we extend our unweighted shipping network with 174
nodes by including all the supply and consumption countries listed in the data [27]
and [28] and adding directed link(s) from (to) a supply (consumption) country that
has no port to (from) countries that have a port and share a border with it, using
country border dataset [29]. In total, 49 nodes and 130 directed links have been
added.

We assume that the flow from the multiple supply countries to the consumption
countries follows the paths on the shipping network with the minimal number of
links, i.e.

∑
i, j 1{Ai j ·Fi j>0}, where Fi j is the flow from country i to j and the indicator

function 1x is one (zero) when the condition x is true (false). For each country, the
following constraint must hold:
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s∗
i +

N ∗∑

j=1

A ji Fji =
N ∗∑

j=1

Ai j Fi j + u∗
i (2)

The constraint ensures the total incoming and outgoing flow combined with the
supply and demand in each node is balanced. After the optimization, 68 nodes have
a positive inflow or outflow.

Results. We use the final inflow, Fi = ∑N ∗
j=1 A ji Fji , per country to estimate ranking

of the same set of 110 countries in drug seizure as in previous analysis. The rank
correlation and recognition rate between the amount of in-flow and drug seizure of
a country can be found in Table1. We find that whilst this method produces a lower
rank-correlation than the methods described in Sects. 3.1 and 3.2 likely due to the
zero inflow of many countries, it achieves a significantly higher recognition rate
at f = 10%. This implies the complementary nature of the three methods and the
potential synergy when combining them.

3.4 Regression Model

We have shown that all threemethods (their output nodal properties) contribute to the
estimation of countries with the highest amount of drug seizure. In order to explore
their synergy and identify the key nodal properties in explaining drug seizure, we
build a regressionmodel that uses aforementioned network derived features in combi-
nation with other country features.We fit multiple Gaussian linear regression models
on the logarithm of the drug seizure data, taking different features as independent
variables. We split our analysis into three parts; in Analysis 1 we investigate our
network derived features, in Analysis 2 we investigate extra country features, and in
Analysis 3 we combine the results from analyses 1 and 2 to propose a final model.

Table2 provides an overviewof the results for each analysis. The adjusted R2 value
indicates the predictive power of each regressionmodel.We also provide Spearman’s
rank correlation and recognition rate between the drug seizure amounts predicted by
each regression model and the actual drug seizure amounts. The correlation and
recognition rate in Table2 for the single feature regression in A.1 are in line with the
results produced by each method in Sects. 3.1, 3.2 and 3.3 and serve as a baseline for
the subsequent models.

Analysis 1. We start with regression models that use each output property derived
in Sects. 3.1, 3.2 and 3.3 as the single feature. We find that the unweighted Eigenvec-
tor Centrality (EC), derived in Sect. 3.1, results in the highest scoring R2 value and
therefore provides the best fit over all network basedmethods. Betweenness and clus-
tering coefficient perform worse than EC and are not considered in this analysis. The
Infection Probability (IP), Eigenvector Centrality (EC) on weighted and unweighted
networks are strongly correlated and the unweighted EC performs the best among
these four properties. Hence, we consider the combination of the unweighted EC and
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Table 2 Results for regression analyses. Country level features considered include: principal eigen-
vector component of the unweighted shipping network (EC unweighted), of the weighted network
(EC weighted), infection probability (IP) in unweighted and unweighted network respectively,
inflow (IF), distance to source countries (D) and the Income Group (IG)

Formula for regression Adj. R2 Corr. rφv(10%) rφv(20%) rφv(40%)

A.1 (3.1) EC unweighted 0.13 0.40 0.27 0.41 0.59

(3.1) EC weighted 0.10 0.39 0.27 0.50 0.52

(3.2) IP unweighted 0.11 0.41 0.27 0.41 0.59

(3.2) IP weighted 0.11 0.40 0.27 0.55 0.55

(3.3) IF 0.07 0.33 0.36 0.36 0.57

ECu + IF 0.16 0.45 0.36 0.55 0.64

A.2 D 0.27 0.55 0.64 0.59 0.64

IG 0.20 0.41 0.27 0.41 0.43

D + IG 0.41 0.68 0.64 0.50 0.77

A.3 EC unweighted +
IF + D + IG

0.55 0.79 0.73 0.82 0.82

The model that performs the best in each of the three categories are in bold

the inflow (IF). Whilst the total country Inflow (IF), derived in Sect. 3.3, does not
provide relatively high rank correlation, the combined regression of unweighted EC
and IF performs better than that of a single network based property, revealing that
these two features contain cumulative predictive power.

Analysis 2. Besides network based features, we investigate another two key coun-
try level features: the Distance (D) of a country from the countries where cocaine is
produced and the Income Group (IG) of a country, because they are known to influ-
ence cocaine seizure rates [26]. For the Distance (D), we take the geodesic distance
in kilometers between the coordinate of each country and the central coordinate of
the source countries. The betweenness and D are weakly correlated (rank correlation
0.14). We also extract the Income Group (IG) of each country [30] in 2016; this
assigns each country as either a low, lower middle, upper middle or high income
country.

Wefind that both distance and IncomeGroup have a high predictive power for drug
seizure, anddistance is an especially effectivemethod toobtain high recognition rates,
i.e. rφv(10%) = 0.64. The combined predictive power of the two country features is
strong and this model is able to outperform the best model from Analysis 1 in all but
one, rφv(20%), of the evaluation metrics.

Analysis 3. For our final investigation, we combine the best performing models
from Analysis 1 and 2. A correlation analysis reveals low rank correlation amongst
EC, IF, D and IG (< 0.150). Therefore, we conclude that each feature provides
unique information and should be used in the final model. This model outperforms
all the other models. It is able to correctly predict 73% of the countries that are in the
top 10% of the highest scoring countries based on drug seizure amounts, and 82%
of the countries in both the top 20% and 40% lists. This observation highlights the
essential role of both network based properties and the two country level properties
in estimating drug seizure.
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4 Conclusion

In this work, we propose different methods to explain and predict the amount of
cocaine trafficking/seized per country using the global shipping network. We firstly
propose three distinct network-based approaches: a centrality metrics based, an SIS
spreading process based and a flow optimizationmodel based approach. Correspond-
ingly, the derived centrality metrics, infection probabilities, and inflow of drug traffic
of nodes are used to estimate the ranking of countries in drug seizure. Furthermore,
a linear regression analysis is designed to investigate the cumulative power of each
approach with other country features.

We find that each approach with its output nodal property could contribute to the
estimationof the rankingof countries in drug seizure.The eigenvector centrality of the
unweighted shipping network seems to perform the best, also in view of the amount
of data needed. Furthermore, the regression analysis reveals that inflow derived from
the optimization model contains unique information when compared with the eigen-
vector centrality; combining in-flow and unweighted eigenvector centrality results
in an evidently better estimation of drug seizure. We end our investigation by show-
ing the benefit of combining our network-based results with other features, e.g., a
country’s distance to the source of cocaine and its income group.

The identification of countries that are susceptible to a large amount of cocaine
trafficking is crucial in stopping the illicit substance from reaching its destination.
Our final proposedmodel provides a starting point to tackling this problem. For coun-
tries that have no drug seizure data, the model can be used to predict their amount of
drug trafficking. Furthermore, our methods can be applied or extended for drug traf-
ficking of other drug groups such as amphetamine-type stimulants and opioids on a
multi-layer network that includes diverse transportationmodes. Ourmethod could be
further developed to distinguish between drug producing and non-producing coun-
tries, between domestic and trade/port related seizures and to understand whether
the difference in the predicted and actual ranking of countries in drug seizure could
be explained by the variance in law enforcement efforts of countries and other social
and political factors.
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