Skip to main content

An MCTS-Based Algorithm to Solve Sequential CFGs on Valuation Structures

  • Conference paper
  • First Online:
PRIMA 2022: Principles and Practice of Multi-Agent Systems (PRIMA 2022)

Abstract

In recent work, a generalised form of characteristic function games has been introduced, where certain sequences of coalition structures (and not a single one) are considered as solutions. Such games have later been extended to allow valuation structures to be used to restrict the allowed solutions for each game in the sequence; the resulting game is called SEQVS. This paper introduces an algorithm to solve instances of SEQVS based on Monte Carlo Tree Search. We experimentally evaluate the algorithm by comparing its performance against a heuristic algorithm appearing in the literature. We show that in settings containing many constraints, our algorithm outperforms the existing heuristic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235–256 (2002). https://doi.org/10.1023/A:1013689704352

    Article  MATH  Google Scholar 

  2. Bistaffa, F., Farinelli, A., Cerquides, J., Rodríguez-Aguilar, J., Ramchurn, S.D.: Anytime coalition structure generation on synergy graphs. In: Proceedings of the 13th International Conference on Autonomous Agents and Multi-agent Systems, pp. 13–20. IFAAMS (2014)

    Google Scholar 

  3. Browne, C.B., et al.: A survey of monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4, 1–43 (2012)

    Article  Google Scholar 

  4. Dann, M., Thangarajah, J., Yao, Y., Logan, B.: Intention-aware multiagent scheduling. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, pp. 285–293. IFAAMS (2020)

    Google Scholar 

  5. Farinelli, A., Bicego, M., Bistaffa, F., Ramchurn, S.D.: A hierarchical clustering approach to large-scale near-optimal coalition formation with quality guarantees. Eng. Appl. Artif. Intell. 59, 170–185 (2016)

    Article  Google Scholar 

  6. FEMA: National Incident Management System. Independently Published (2017)

    Google Scholar 

  7. Greco, G., Guzzo, A.: Constrained coalition formation on valuation structures. Artif. Intell. 249, 19–46 (2017)

    Article  MATH  Google Scholar 

  8. Kocsis, L., Szepesvári, C.: Bandit based monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_29

    Chapter  Google Scholar 

  9. Krausburg, T., Dix, J., Bordini, R.H.: Feasible coalition sequences. In: Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems, pp. 719–727. IFAAMAS (2021)

    Google Scholar 

  10. Krausburg, T., Dix, J., Bordini, R.H.: Computing sequences of coalition structures. In: Proceedings of the 2nd Symposium Series on Computational Intelligence, pp. 01–07. IEEE (2021)

    Google Scholar 

  11. Lee, J., Jeon, W., Kim, G., Kim, K.: Monte-Carlo tree search in continuous action spaces with value gradients. In: Proceedings of the 34th Conference on Artificial Intelligence, pp. 4561–4568. AAAI Press (2020)

    Google Scholar 

  12. Michalak, T., Rahwan, T., Elkind, E., Wooldridge, M., Jennings, N.R.: A hybrid exact algorithm for complete set partitioning. Artif. Intell. 230, 14–50 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Präntare, F., Appelgren, H., Heintz, F.: Anytime heuristic and monte Carlo methods for large-scale simultaneous coalition structure generation and assignment. In: Proceedings of the 35th Conference on Artificial Intelligence, pp. 11317–11324. AAAI Press (2021)

    Google Scholar 

  14. Rahwan, T., Michalak, T.P., Wooldridge, M., Jennings, N.R.: Coalition structure generation: a survey. Artif. Intell. 229, 139–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.: An anytime algorithm for optimal coalition structure generation. J. Artif. Intell. Res. 34, 521–567 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016)

    Article  Google Scholar 

  18. Skibski, O., Michalak, T.P., Sakurai, Y., Wooldridge, M.J., Yokoo, M.: Partition decision trees: representation for efficient computation of the Shapley value extended to games with externalities. Auton. Agent. Multi-Agent Syst. 34, 1–39 (2020)

    Article  Google Scholar 

  19. Wu, F., Ramchurn, S.D.: Monte-Carlo tree search for scalable coalition formation. In: Proceedings of the 29th International Joint Conference on Artificial Intelligence, pp. 407–413. IJCAI Organization (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tabajara Krausburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krausburg, T., Dix, J., Bordini, R.H. (2023). An MCTS-Based Algorithm to Solve Sequential CFGs on Valuation Structures. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds) PRIMA 2022: Principles and Practice of Multi-Agent Systems. PRIMA 2022. Lecture Notes in Computer Science(), vol 13753. Springer, Cham. https://doi.org/10.1007/978-3-031-21203-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21203-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21202-4

  • Online ISBN: 978-3-031-21203-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics