Skip to main content

The Impact of Susceptibility Distortion Correction Protocols on Adolescent Diffusion MRI Measures

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Included in the following conference series:

  • 318 Accesses

Abstract

Diffusion MRI (dMRI) is widely used to chart the development of brain white matter (WM) microstructure across the lifespan, but suffers from susceptibility distortions and signal loss in brain regions at air-tissue boundaries like the brain stem, and ventral regions of the temporal and frontal lobes. Due to time limitations when acquiring data in adolescent, aging, and clinical populations, acquiring dMRI data twice with opposite phase encoding directions (blip-up, blip-down), as required by existing susceptibility correction tools, may not be feasible. Here we used 3T dMRI data from 99 healthy adolescents (age range: 8–21 yrs; 48% Male) from the HCP Development cohort to compare six preprocessing schemes—using either no, full, or various degrees of duplicate blip-up blip-down data as input for FSL’s widely used topup and eddy distortion correction tools—to provide guidance on dMRI acquisition protocols when scan time is limited and a trade-off needs to be made. For each preprocessing pipeline, we compared the error in regional WM DTI and NODDI model fits, as well as regional associations with age. We found that model fitting errors were significantly higher in pipelines that did not use the full blip-up blip-down acquisition; associations with age were largely not affected by the preprocessing scheme used to correct susceptibility distortions.

T. M. Nir and J. E. Villalón-Reina—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebel, C., Deoni, S.: The development of brain white matter microstructure. Neuroimage 182, 207–218 (2018)

    Article  Google Scholar 

  2. Tax, C.M.W., Vos, S.B., Leemans, A.: Checking and correcting DTI data. In: Van Hecke, W., Emsell, L., Sunaert, S. (eds.) Diffusion Tensor Imaging, pp. 127–150. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-3118-7_7

    Chapter  Google Scholar 

  3. Andersson, J.L.R., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078 (2016)

    Article  Google Scholar 

  4. Andersson, J.L.R., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20(2), 870–888 (2003)

    Article  Google Scholar 

  5. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1), S208-19 (2004)

    Article  Google Scholar 

  6. Irfanoglu, M.O., et al.: DR-BUDDI (diffeomorphic registration for blip-up blip- down diffusion imaging) method for correcting echo planar imaging distortions. Neuroimage 106, 284–299 (2015)

    Article  Google Scholar 

  7. Ruthotto, L., et al.: Diffeomorphic susceptibility artifact correction of diffusion weighted magnetic resonance images. Phys. Med. Biol. 57(18), 5715–5731 (2012)

    Article  Google Scholar 

  8. Harms, M.P., et al.: Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects. Neuroimage 183, 972–984 (2018)

    Article  Google Scholar 

  9. Somerville, L.H., et al.: The lifespan human connectome project in development: a large-scale study of brain connectivity development in 5–21 year olds. Neuroimage 183, 456–468 (2018)

    Article  Google Scholar 

  10. Zavaliangos-Petropulu, A., et al.: Diffusion MRI indices and their relation to cognitive impairment in brain aging: the updated multi-protocol Approach in ADNI3. Front. Neuroinform. 13, 2 (2019)

    Article  Google Scholar 

  11. Initiative, P.P.M.: The Parkinson progression marker initiative (PPMI). Prog. Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  12. Hagler, D.J., Jr., et al.: Image processing and analysis methods for the adolescent brain cognitive development study. Neuroimage 202, 116091 (2019)

    Google Scholar 

  13. Miller, K.L., et al.: Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19(11), 1523–1536 (2016)

    Article  Google Scholar 

  14. Schilling, K.G., et al.: Synthesized b0 for diffusion distortion correction (Synb0- DisCo). Magn. Reson. Imaging 64, 62–70 (2019)

    Article  Google Scholar 

  15. Ferrucci, L.: The Baltimore Longitudinal Study of Aging (BLSA): a 50-year-long journey and plans for the future. J. Gerontol. A Biol. Sci. Med. Sci. 63(12), 1416–1419 (2008)

    Article  Google Scholar 

  16. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J . 66(1), 259–267 (1994)

    Article  Google Scholar 

  17. Zhang, H., et al.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

  18. Veraart, J., et al.: Denoising of diffusion MRI using random matrix theory. Neuroimage 142, 394–406 (2016)

    Article  Google Scholar 

  19. Garyfallidis, E., et al.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 8 (2014)

    Article  Google Scholar 

  20. Veraart, J., et al.: Gibbs ringing in diffusion MRI. Magn. Reson. Med. 76(1), 301–314 (2016)

    Article  Google Scholar 

  21. Zhan, L., et al.: How does angular resolution affect diffusion imaging measures? Neuroimage 49(2), 1357–1371 (2010)

    Article  Google Scholar 

  22. Andersson, J.L.R., et al.: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage 141, 556–572 (2016)

    Article  Google Scholar 

  23. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  24. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  25. Fick, R.H.J., Wassermann, D., Deriche, R.: The Dmipy toolbox: diffusion MRI multi-compartment modeling and microstructure recovery made easy. Front. Neuroinform. 13, 64 (2019)

    Article  Google Scholar 

  26. Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  27. Yeh, F.-C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178, 57–68 (2018)

    Article  Google Scholar 

  28. Mori, S., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2), 570–582 (2008)

    Article  Google Scholar 

  29. Lebel, C., Beaulieu, C.: Longitudinal development of human brain wiring continues from childhood into adulthood. J. Neurosci. 31(30), 10937–10947 (2011)

    Article  Google Scholar 

  30. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57(1), 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Smith, S.M., et al.: Tract-based spatial statistics: voxelwise analysis of multisubject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by NIH R01 AG059874, T32 AG058507, P41 EB015922, RF1 AG057892, and Biogen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neda Jahanshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nir, T.M., Villalón-Reina, J.E., Thompson, P.M., Jahanshad, N. (2022). The Impact of Susceptibility Distortion Correction Protocols on Adolescent Diffusion MRI Measures. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics