Skip to main content

Objective-Aware Reputation-Enabled Blockchain-Based Federated Learning

  • Conference paper
  • First Online:
Blockchain and Applications, 4th International Congress (BLOCKCHAIN 2022)

Abstract

Federated Learning (FL) is a distributed-collaborative machine learning framework to overcome the challenges of data silos and data privacy. The conventional FL enhances data owners’ privacy by maintaining their data on devices. However, assuring the quality of data and model verification is challenging since no one contributor can see the others’ data. The problem becomes even more challenging if data is not independent and identically distributed (Non-IID). This study proposes a multi-channel objective-aware validation method to identify valuable contributors to the FL model on a blockchain network with Non-IID data. We implement the proposed system on Hyperledger Fabric by utilizing a multi-layer deep learning model. The evaluation results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

References

  1. McMahan, B., Ramage, D.: Federated Learning: collaborative machine learning without centralized training data. Google Research Blog 3 (2017)

    Google Scholar 

  2. Bonawitz, K., Ivanov, V., Kreuter, B., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191 (2017)

    Google Scholar 

  3. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 19–38. IEEE (2017)

    Google Scholar 

  4. Chai, D., Wang, L., Chen, K., Yang, Q.: Secure federated matrix factorization. IEEE Intell. Syst. 36(5), 11–20 (2020)

    Article  Google Scholar 

  5. Bittau, A., Erlingsson, Ú., Maniatis, P., et al.: Prochlo: strong privacy for analytics in the crowd. In: Proceedings of the 26th Symposium on Operating Systems Principles, pp. 441–459 (2017)

    Google Scholar 

  6. Konečný, J., McMahan, H.B., Yu, F.X., et al.: Federated learning: strategies for improving communication efficiency. arXiv Preprint (2016). arXiv:1610.05492

  7. Yao, X., Huang, T., Wu, C., et al.: Towards faster and better federated learning: a feature fusion approach. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 175–179. IEEE (2019)

    Google Scholar 

  8. Kairouz, P., McMahan, H.B., Avent, B., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  9. Kang, J., Xiong, Z., Niyato, D., et al.: Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet Things J. 6(6), 10700–10714 (2019)

    Article  Google Scholar 

  10. Lai, F., Zhu, X., Madhyastha, H.V., Chowdhury, M.: Oort: efficient federated learning via guided participant selection. In: 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), pp. 19–35 (2021)

    Google Scholar 

  11. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. Adv. Neural Inf. Process. Syst. 33, 19586–19597 (2020)

    Google Scholar 

  12. Ma, C., Li, J., Ding, M., et al.: On safeguarding privacy and security in the framework of federated learning. IEEE Network 34(4), 242–248 (2020)

    Article  Google Scholar 

  13. Lu, Y., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inform. 16(6), 4177–4186 (2019)

    Article  Google Scholar 

  14. Qu, Y., Gao, L., Luan, T.H., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet Things J. 7(6), 5171–5183 (2020)

    Article  Google Scholar 

  15. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. arXiv Preprint (2019). arXiv:1906.11078

  16. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)

    Article  Google Scholar 

  17. Jiang, C., Xu, C., Zhang, Y.: PFLM: privacy-preserving federated learning with membership proof. Inf. Sci. 576, 288–311 (2021)

    Article  MathSciNet  Google Scholar 

  18. Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: Blockfla: accountable federated learning via hybrid blockchain architecture. In: Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, pp. 101–112 (2021)

    Google Scholar 

  19. Wang, R., Li, H., Liu, E.: Blockchain-based federated learning in mobile edge networks with application in internet of vehicles. arXiv Preprint (2021). arXiv:2103.01116

  20. Toyoda, K., Zhang, A.N.: Mechanism design for an incentive-aware blockchain-enabled federated learning platform. In: 2019 IEEE International Conference on Big Data (Big Data), pp. 395–403. IEEE (2019)

    Google Scholar 

  21. Peng, Z., Xu, J., Chu, X., et al.: VFChain: enabling verifiable and auditable federated learning via blockchain systems. IEEE Trans. Netw. Sci. Eng. 9(1), 173–186 (2021)

    Article  Google Scholar 

  22. Xuan, S., Jin, M., Li, X., et al.: DAM-SE: a blockchain-based optimized solution for the counterattacks in the internet of federated learning systems. Secur. Commun. Netw. (2021)

    Google Scholar 

  23. Androulaki, E., Barger, A., Bortnikov, V., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  24. Shayan, M., Fung, C., Yoon, C.J., Beschastnikh, I.: Biscotti: a blockchain system for private and secure federated learning. IEEE Trans. Parallel Distrib. Syst. 32(7), 1513–1525 (2020)

    Article  Google Scholar 

  25. Kim, H., Park, J., Bennis, M., Kim, S.L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Article  Google Scholar 

  26. Kasyap, H., Tripathy, S.: Privacy-preserving decentralized learning framework for healthcare system. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(2s), 1–24 (2021)

    Google Scholar 

  27. Goldsteen, A., Ezov, G., Shmelkin, R., et al.: Data minimization for GDPR compliance in machine learning models. AI Ethics 1–15 (2021)

    Google Scholar 

  28. Martinez, I., Francis, S., Hafid, A.S.: Record and reward federated learning contributions with blockchain. In: 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 50–57. IEEE (2019)

    Google Scholar 

  29. Li, Y., Chen, C., Liu, N., et al.: A blockchain-based decentralized federated learning framework with committee consensus. IEEE Network 35(1), 234–241 (2020)

    Article  Google Scholar 

  30. McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  31. Paudice, A., Muñoz-González, L., Lupu, E.C.: Label sanitization against label flipping poisoning attacks. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 5–15. Springer, Cham (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samaneh Miri Rostami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rostami, S.M., Samet, S., Kobti, Z. (2023). Objective-Aware Reputation-Enabled Blockchain-Based Federated Learning. In: Prieto, J., Benítez Martínez, F.L., Ferretti, S., Arroyo Guardeño, D., Tomás Nevado-Batalla, P. (eds) Blockchain and Applications, 4th International Congress . BLOCKCHAIN 2022. Lecture Notes in Networks and Systems, vol 595. Springer, Cham. https://doi.org/10.1007/978-3-031-21229-1_24

Download citation

Publish with us

Policies and ethics