Skip to main content

Blockchain-Based Self-Sovereign Identity System with Attribute-Based Issuance

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2022)

Abstract

With the rapid development of blockchain applications, digital identity management systems have started being deployed on decentralized networks. However, the inherent transparency of blockchain technology poses a challenge to privacy-conscious applications. To address this challenge, we adopt a DDH-based oblivious transfer and trust execution environment (TEE) to hide users’ private attributes. Furthermore, we propose a concrete system that includes transferring users’ attributes from a legacy server for verifying and issuing on the blockchain. In verifying protocol, we apply TEE in confidential smart contracts that execute the verification logic privately. Users can control their data and freely compose their identities using verified attributes. We also leverage smart contracts to record the status of attributes to achieve batch revocation of identities. Security analysis and comparison demonstrate that our system achieves privacy protection and is more user-centric in revocation than existing blockchain-based identity systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A digital identity refers to the information needed to activate an account, as well as any traces an individual leaves as a result of their activities.

References

  1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: EUROSYS 2018, pp. 1–15 (2018)

    Google Scholar 

  2. Baghery, K.: On the efficiency of privacy-preserving smart contract systems. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2019. LNCS, vol. 11627, pp. 118–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23696-0_7

  3. Brandenburger, M., Cachin, C., Kapitza, R., Sorniotti, A.: Blockchain and trusted computing: problems, pitfalls, and a solution for hyperledger fabric. CoRR abs/1805.08541 (2018). http://arxiv.org/abs/1805.08541

  4. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: S &P 2018, pp. 315–334. IEEE (2018)

    Google Scholar 

  5. Decentralized identity foundation.https://identity.foundation/, Accessed 20 June 2022

  6. Digital identity management. https://www.raulwalter.com/government/digital-identity-management/. Accessed 20 July 2022

  7. Du, W., Atallah, M.J.: Secure multi-party computation problems and their applications: a review and open problems. In: NSPW 2001, pp. 13–22. ACM (2001)

    Google Scholar 

  8. Dunphy, P., Petitcolas, F.A.: A first look at identity management schemes on the blockchain. IEEE S &P 16(4), 20–29 (2018)

    Google Scholar 

  9. Efanov, D., Roschin, P.: The all-pervasiveness of the blockchain technology. Procedia Comput. Sci. 123, 116–121 (2018)

    Article  Google Scholar 

  10. Ferdous, M.S., Chowdhury, F., Alassafi, M.O.: In search of self-sovereign identity leveraging blockchain technology. IEEE Access 7, 103059–103079 (2019)

    Article  Google Scholar 

  11. Goldreich, O.: Secure multi-party computation. Manuscript. Preliminary version 78(110) (1998)

    Google Scholar 

  12. Jacobovitz, O.: Blockchain for identity management. Technical report, The Lynne and William Frankel Center for Computer Science Department of Computer Science, Ben-Gurion University, Beersheba, Israel (2016). https://www.cs.bgu.ac.il/frankel/TechnicalReports/2016/16-02.pdf

  13. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: S &P 2016, pp. 839–858. IEEE (2016)

    Google Scholar 

  14. Laurent, M., Bouzefrane, S.: Digital Identity Management. Elsevier (2015)

    Google Scholar 

  15. Li, R., Wang, Q., Wang, Q., Galindo, D., Ryan, M.: SoK: TEE-assisted confidential smart contract. Proc. Priv. Enhancing Technol. 2022(3), 711–731 (2022)

    Article  Google Scholar 

  16. Maram, D., et al.: CanDID: Can-Do decentralized identity with legacy compatibility, sybil-resistance, and accountability. In: S &P 2021, pp. 1348–1366. IEEE (2021)

    Google Scholar 

  17. Naik, N., Jenkins, P.: uPort open-source identity management system: an assessment of self-sovereign identity and user-centric data platform built on blockchain. In: ISSE 2020, pp. 1–7. IEEE (2020)

    Google Scholar 

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://www.bitcoin.org/bitcoin.pdf

  19. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_36

  20. Rabin, M.O.: How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch. 187 (2005). https://eprint.iacr.org/2005/187

  21. Reed, D., et al.: Decentralized identifiers (DIDs) v1.0. Technical report, W3C (2020). https://www.w3.org/TR/did-core/

  22. Solomon, R., Almashaqbeh, G.: smartFHE: privacy-preserving smart contracts from fully homomorphic encryption. IACR Cryptol. ePrint Arch. 133 (2021). https://eprint.iacr.org/2021/133

  23. Szalachowski, P.: Password-authenticated decentralized identities. IEEE Trans. Inf. Forensics Secur. 16, 4801–4810 (2021)

    Article  Google Scholar 

  24. Voigt, P., Von dem Bussche, A.: The EU General Data Protection Regulation (GDPR). Springer, Cham (2017)

    Google Scholar 

  25. Wang, S., Yuan, Y., Wang, X., Li, J., Qin, R., Wang, F.Y.: An overview of smart contract: architecture, applications, and future trends. In: IV 2018, pp. 108–113. IEEE (2018)

    Google Scholar 

  26. Wood, G., et al.: Ethereum: a secure decentralised generalised transaction ledger. Yellow paper, Ethereum project (2014). https://files.gitter.im/ethereum/yellowpaper/VIyt/Paper.pdf

  27. Yang, X., Li, W.: A zero-knowledge-proof-based digital identity management scheme in blockchain. Comput. Secur. 99, 102050 (2020)

    Article  Google Scholar 

  28. Zhang, F., Cecchetti, E., Croman, K., Juels, A., Shi, E.: Town crier: an authenticated data feed for smart contracts. In: CCS 2016, pp. 270–282 (2016)

    Google Scholar 

  29. Zhang, F., Maram, D., Malvai, H., Goldfeder, S., Juels, A.: DECO: liberating web data using decentralized oracles for TLS. In: CCS 2020, pp. 1919–1938 (2020)

    Google Scholar 

  30. Zyskind, G., Nathan, O., Pentland, A.: Enigma: decentralized computation platform with guaranteed privacy. CoRR abs/1506.03471 (2015). http://arxiv.org/abs/1506.03471

Download references

Acknowledgments

The authors thank the anonymous reviewers of ISPEC 2022 for their insightful suggestions on this work. This research is partially supported by the National Science and Technology Council, Taiwan (ROC), under grant numbers NSTC 109-2221-E-004-011-MY3, NSTC 110-2221-E-004-003-, NSTC 110-2622-8-004-001-, and NSTC 111-2218-E-004-001-MBK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raylin Tso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, YH., Liu, ZY., Tso, R., Tseng, YF. (2022). Blockchain-Based Self-Sovereign Identity System with Attribute-Based Issuance. In: Su, C., Gritzalis, D., Piuri, V. (eds) Information Security Practice and Experience. ISPEC 2022. Lecture Notes in Computer Science, vol 13620. Springer, Cham. https://doi.org/10.1007/978-3-031-21280-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21280-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21279-6

  • Online ISBN: 978-3-031-21280-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics