Abstract
The field of continuous touch-based authentication has been rapidly developing over the last decade, creating a fragmented and difficult-to-navigate area for researchers and application developers alike. In this study, we perform a systematic literature analysis of 30 studies on the techniques used for feature extraction, classification, and aggregation in continuous touch-based authentication systems as well as the performance metrics reported by each study. Based on our findings, we design a set of experiments to compare the performance of the most frequently used techniques in the field under clearly defined conditions. In addition, we introduce two new techniques for continuous touch-based authentication: an expanded feature set (consisting of 149 unique features) and a multi-algorithm ensemble-based classifier. The comparison includes 13 feature sets, 11 classifiers, and 5 aggregation methods. In total, 204 model configurations are examined and we show that our novel techniques outperform the current state-of-the-art in each category. The results are also validated across three different publicly available datasets. Our best performing model achieves 4.8% EER using 16 consecutive strokes. Finally, we discuss the findings of our investigation with the aim of making the field more understandable and accessible for researchers and practitioners.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ericsson mobility report 2021. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021. Accessed 20 Jan 2022
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/, software available from tensorflow.org
Abuhamad, M., Abuhmed, T., Mohaisen, D., Nyang, D.: Autosen: deep-learning-based implicit continuous authentication using smartphone sensors. IEEE Internet Things J. 7(6), 5008–5020 (2020). https://doi.org/10.1109/JIOT.2020.2975779
Acien, A., Morales, A., Fiérrez, J., Vera-Rodríguez, R., Bartolome, I.: Be-captcha: detecting human behavior in smartphone interaction using multiple inbuilt sensors. CoRR abs/2002.00918 (2020). https://arxiv.org/abs/2002.00918
Acien, A., Morales, A., Fiérrez, J., Vera-Rodríguez, R., Delgado-Mohatar, O.: Becaptcha: bot detection in smartphone interaction using touchscreen biometrics and mobile sensors. CoRR abs/2005.13655 (2020). https://arxiv.org/abs/2005.13655
Ahmad, J., Sajjad, M., Jan, Z., Mehmood, I., Rho, S., Baik, S.W.: Analysis of interaction trace maps for active authentication on smart devices. Multimedia Tools Appl. 76(3), 4069–4087 (2016). https://doi.org/10.1007/s11042-016-3450-y
Antal, M., Bokor, Z., Szabó, L.Z.: Information revealed from scrolling interactions on mobile devices. Pattern Recogn. Lett. 56, 7–13 (2015). https://doi.org/10.1016/j.patrec.2015.01.011, https://www.sciencedirect.com/science/article/pii/S0167865515000355
Antal, M., Szabó, L.Z.: Biometric authentication based on touchscreen swipe patterns. Procedia Technol. 22, 862–869 (2016). 9th International Conference Interdisciplinarity in Engineering, INTER-ENG 2015, 8-9 October 2015, Tirgu Mures, Romania.https://doi.org/10.1016/j.protcy.2016.01.061, http://www.sciencedirect.com/science/article/pii/S2212017316000621
Bo, C., Zhang, L., Li, X.Y., Huang, Q., Wang, Y.: Silentsense: silent user identification via touch and movement behavioral biometrics. In: Proceedings of the 19th Annual International Conference on Mobile Computing & Networking, MobiCom 2013, pp 187–190. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2500423.2504572
Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)
Cheon, E., Shin, Y., Huh, J., Kim, H., Oakley, I.: Gesture authentication for smartphones: evaluation of gesture password selection policies. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 249–267. IEEE Computer Society, Los Alamitos, CA, USA, May 2020. https://doi.org/10.1109/SP40000.2020.00034, https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00034
Chollet, F., et al.: Keras (2015). https://keras.io
Eberz, S., Rasmussen, K.B., Lenders, V., Martinovic, I.: Evaluating behavioral biometrics for continuous authentication: challenges and metrics. In: Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, ASIA CCS 2017, pp. 386–399. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3052973.3053032
Egelman, S., Jain, S., Portnoff, R.S., Liao, K., Consolvo, S., Wagner, D.: Are you ready to lock? In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS 2014, pp. 750–761. ACM, New York (2014). https://doi.org/10.1145/2660267.2660273, http://doi.acm.org/10.1145/2660267.2660273
Fathy, M.E., Patel, V.M., Chellappa, R.: Face-based active authentication on mobile devices. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1687–1691. IEEE (2015)
Feng, T., et al.: Continuous mobile authentication using touchscreen gestures. In: 2012 IEEE Conference on Technologies for Homeland Security (HST), pp. 451–456 (2012). https://doi.org/10.1109/THS.2012.6459891
Feng, T., Yang, J., Yan, Z., Tapia, E.M., Shi, W.: Tips: context-aware implicit user identification using touch screen in uncontrolled environments. In: Proceedings of the 15th Workshop on Mobile Computing Systems and Applications. HotMobile 2014, Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2565585.2565592
Fierrez, J., Pozo, A., Martinez-Diaz, M., Galbally, J., Morales, A.: Benchmarking touchscreen biometrics for mobile authentication. IEEE Trans. Inf. Forensics Secur. 13(11), 2720–2733 (2018). https://doi.org/10.1109/TIFS.2018.2833042
Filippov, A.I., Iuzbashev, A.V., Kurnev, A.S.: User authentication via touch pattern recognition based on isolation forest. In: 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 1485–1489 (2018). https://doi.org/10.1109/EIConRus.2018.8317378
Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: on the applicability of touchscreen input as a behavioral biometric for continuous authentication. IEEE Trans. Inf. Forensics Secur. 8(1), 136–148 (2013)
Galbally, J., Fierrez, J., Alonso-Fernandez, F., Martinez-Diaz, M.: Evaluation of direct attacks to fingerprint verification systems. Telecommun. Syst. 47(3), 243–254 (2011). https://doi.org/10.1007/s11235-010-9316-0
Gascon, H., Uellenbeck, S., Wolf, C., Rieck, K.: Continuous authentication on mobile devices by analysis of typing motion behavior. Sicherheit 2014-Sicherheit, Schutz und Zuverlässigkeit (2014)
Georgiev, M., Eberz, S., Turner, H., Lovisotto, G., Martinovic, I.: Common evaluation pitfalls in touch-based authentication systems. In: Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security, ASIA CCS 2022, pp. 1049–1063. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3488932.3517388
Incel, O.D., et al.: Dakota: sensor and touch screen-based continuous authentication on a mobile banking application. IEEE Access 9, 38943–38960 (2021). https://doi.org/10.1109/ACCESS.2021.3063424
Jorgensen, Z., Yu, T.: On mouse dynamics as a behavioral biometric for authentication. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ASIACCS 2011, pp. 476–482. Association for Computing Machinery, New York (2011). https://doi.org/10.1145/1966913.1966983
Kim, J., Kang, P.: Freely typed keystroke dynamics-based user authentication for mobile devices based on heterogeneous features. Pattern Recogn. 108, 107556 (2020). https://doi.org/10.1016/j.patcog.2020.107556, https://www.sciencedirect.com/science/article/pii/S0031320320303599
Kumar, R., Kundu, P.P., Phoha, V.V.: Continuous authentication using one-class classifiers and their fusion. In: 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA), pp. 1–8 (2018). https://doi.org/10.1109/ISBA.2018.8311467
Kumar, R., Phoha, V.V., Serwadda, A.: Continuous authentication of smartphone users by fusing typing, swiping, and phone movement patterns. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016). https://doi.org/10.1109/BTAS.2016.7791164
Li, L., Zhao, X., Xue, G.: Unobservable re-authentication for smartphones. In: 20th Annual Network and Distributed System Security Symposium, NDSS 2013, San Diego, California, USA, 24–27 February 2013. The Internet Society (2013). https://www.ndss-symposium.org/ndss2013/unobservable-re-authentication-smartphones
Mahbub, U., Sarkar, S., Patel, V.M., Chellappa, R.: Active user authentication for smartphones: a challenge data set and benchmark results. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–8 (2016). https://doi.org/10.1109/BTAS.2016.7791155
Meng, W., Wang, Y., Wong, D.S., Wen, S., Xiang, Y.: Touchwb: touch behavioral user authentication based on web browsing on smartphones. J. Netw. Comput. Appl. 117, 1–9 (2018). https://doi.org/10.1016/j.jnca.2018.05.010, https://www.sciencedirect.com/science/article/pii/S1084804518301723
Meng, Y., Wong, D.S., Kwok, L.F.: Design of touch dynamics based user authentication with an adaptive mechanism on mobile phones. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC 2014, pp. 1680–1687. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2554850.2554931
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P.: Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. PLoS Med. 6(7), e1000097 (2009)
Mondal, S., Bours, P.: A computational approach to the continuous authentication biometric system. Inf. Sci. 304, 28–53 (2015). https://doi.org/10.1016/j.ins.2014.12.045, https://www.sciencedirect.com/science/article/pii/S0020025514011979
Mondal, S., Bours, P.: Swipe gesture based continuous authentication for mobile devices. In: 2015 International Conference on Biometrics (ICB), pp. 458–465 (2015). https://doi.org/10.1109/ICB.2015.7139110
Murmuria, R., Stavrou, A., Barbará, D., Fleck, D.: Continuous authentication on mobile devices using power consumption, touch gestures and physical movement of users. In: Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 405–424. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26362-5_19
Papamichail, M.D., Chatzidimitriou, K.C., Karanikiotis, T., Oikonomou, N.C.I., Symeonidis, A.L., Saripalle, S.K.: Brainrun: a behavioral biometrics dataset towards continuous implicit authentication. Data 4(2) (2019). https://doi.org/10.3390/data4020060, https://www.mdpi.com/2306-5729/4/2/60
Patel, V.M., Chellappa, R., Chandra, D., Barbello, B.: Continuous user authentication on mobile devices: recent progress and remaining challenges. IEEE Sig. Process. Mag. 33(4), 49–61 (2016). https://doi.org/10.1109/MSP.2016.2555335
Ramachandra, R., Busch, C.: Presentation attack detection methods for face recognition systems: a comprehensive survey. ACM Comput. Surv. 50(1) (2017). https://doi.org/10.1145/3038924
Rasnayaka, S., Sim, T.: Who wants continuous authentication on mobile devices? In: 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–9 (2018). https://doi.org/10.1109/BTAS.2018.8698599
Rocha, R., Carneiro, D., Novais, P.: Continuous authentication with a focus on explainability. Neurocomputing 423, 697–702 (2021). https://doi.org/10.1016/j.neucom.2020.02.122, https://www.sciencedirect.com/science/article/pii/S0925231220307323
Roy, A., Halevi, T., Memon, N.: An hmm-based behavior modeling approach for continuous mobile authentication. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3789–3793 (2014). https://doi.org/10.1109/ICASSP.2014.6854310
Samet, S., Ishraque, M.T., Ghadamyari, M., Kakadiya, K., Mistry, Y., Nakkabi, Y.: TouchMetric: a machine learning based continuous authentication feature testing mobile application. Int. J. Inf. Technol. 11(4), 625–631 (2019). https://doi.org/10.1007/s41870-019-00306-w
Saravanan, P., Clarke, S., Chau, D.H.P., Zha, H.: LatentGesture: active user authentication through background touch analysis. In: Proceedings of the Second International Symposium of Chinese CHI, Chinese CHI 2014, pp. 110–113. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2592235.2592252
Serwadda, A., Phoha, V.V., Wang, Z.: Which verifiers work?: A benchmark evaluation of touch-based authentication algorithms. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–8 (2013). https://doi.org/10.1109/BTAS.2013.6712758
Shen, C., Zhang, Y., Guan, X., Maxion, R.A.: Performance analysis of touch-interaction behavior for active smartphone authentication. IEEE Trans. Inf. Forensics Secur. 11(3), 498–513 (2016). https://doi.org/10.1109/TIFS.2015.2503258
Sitová, Z., et al.: HMOG: new behavioral biometric features for continuous authentication of smartphone users. IEEE Trans. Inf. Forensics Secur. 11(5), 877–892 (2016). https://doi.org/10.1109/TIFS.2015.2506542
Song, Y., Cai, Z., Zhang, Z.L.: Multi-touch authentication using hand geometry and behavioral information. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 357–372 (2017). https://doi.org/10.1109/SP.2017.54
Syed, Z., Helmick, J., Banerjee, S., Cukic, B.: Touch gesture-based authentication on mobile devices: the effects of user posture, device size, configuration, and inter-session variability. J. Syst. Softw. 149, 158–173 (2019). https://doi.org/10.1016/j.jss.2018.11.017,https://www.sciencedirect.com/science/article/pii/S0164121218302516
Volaka, H.C., Alptekin, G., Basar, O.E., Isbilen, M., Incel, O.D.: Towards continuous authentication on mobile phones using deep learning models. Procedia Comput. Sci. 155, 177–184 (2019). https://doi.org/10.1016/j.procs.2019.08.027, https://www.sciencedirect.com/science/article/pii/S187705091930941X, the 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2019), The 14th International Conference on Future Networks and Communications (FNC-2019), The 9th International Conference on Sustainable Energy Information Technology
Wang, X., Yu, T., Mengshoel, O., Tague, P.: Towards continuous and passive authentication across mobile devices: an empirical study. In: Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2017, pp. 35–45. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3098243.3098244
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., DATA, M.: Practical machine learning tools and techniques. In: DATA MINING, vol. 2, p. 4 (2005)
Xu, H., Zhou, Y., Lyu, M.R.: Towards continuous and passive authentication via touch biometrics: an experimental study on smartphones. In: 10th Symposium On Usable Privacy and Security (SOUPS 2014), pp. 187–198. USENIX Association, Menlo Park, CA, July 2014. https://www.usenix.org/conference/soups2014/proceedings/presentation/xu
Xu, X., et a;.: TouchPass: towards behavior-irrelevant on-touch user authentication on smartphones leveraging vibrations. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, MobiCom 2020, Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3372224.3380901
Yang, Y., Guo, B., Wang, Z., Li, M., Yu, Z., Zhou, X.: Behavesense: continuous authentication for security-sensitive mobile apps using behavioral biometrics. Ad Hoc Netw. 84, 9–18 (2019). https://doi.org/10.1016/j.adhoc.2018.09.015, https://www.sciencedirect.com/science/article/pii/S1570870518306899
Yang, Y., Clark, G.D., Lindqvist, J., Oulasvirta, A.: Free-form gesture authentication in the wild, pp. 3722–3735. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2858036.2858270
Zhang, H., Patel, V.M., Fathy, M., Chellappa, R.: Touch gesture-based active user authentication using dictionaries. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 207–214 (2015). https://doi.org/10.1109/WACV.2015.35
Zhao, X., Feng, T., Shi, W.: Continuous mobile authentication using a novel graphic touch gesture feature. In: 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2013). https://doi.org/10.1109/BTAS.2013.6712747
Zhao, X., Feng, T., Shi, W., Kakadiaris, I.A.: Mobile user authentication using statistical touch dynamics images. IEEE Trans. Inf. Forensics Secur. 9(11), 1780–1789 (2014). https://doi.org/10.1109/TIFS.2014.2350916
Zheng, N., Bai, K., Huang, H., Wang, H.: You are how you touch: user verification on smartphones via tapping behaviors. In: 2014 IEEE 22nd International Conference on Network Protocols, pp. 221–232 (2014). https://doi.org/10.1109/ICNP.2014.43
Acknowledgments
This work was generously supported by a grant from the Engineering and Physical Sciences Research Council [grant number EP/P00881X/1].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Abbreviations
-
AB - AdaBoost ACC - Accuracy
-
BN - Bayesian Network ANGA - Average Number of Genuine Actions
-
CPANN - Counter Propagation Artificial Neural Network
-
DT - Decision Tree ANIA - Average Number of Impostor Actions
-
EE - Elliptic Envelop AUC - Area Under Curve
-
ENS - Ensemble FAR - False Acceptance Rate
-
GB - Gradient Boosting FRR - False Rejection Rate
-
HMM - Hidden Markov Models HTER - Half Total Error Rate
-
IF - Isolation Forest ROC - Receiver Operating Characteristic
-
KDTGR - Kernel Dictionary-based Touch Gesture Recognition
-
KSRC - Kernel Sparse Representation-based Classification
-
LOF - Local Outlier Factor NB - Naive Bayes
-
LR - Logistic Regression NN - Neural Networks
-
OC-SVM - OneClass Support Vector Machine
-
PSO-RBFN - Particle Swarm Optimization Radial Basis Function Network
-
RC - Random Committee RF - Random Forest
-
SM - Scaled Manhattan SVM - Support Vector Machine
-
StrOUD - Strangeness based OUtlier Detection
-
kNN - k Nearest Neighbors
All Features
Table 7.
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Georgiev, M., Eberz, S., Martinovic, I. (2022). Techniques for Continuous Touch-Based Authentication. In: Su, C., Gritzalis, D., Piuri, V. (eds) Information Security Practice and Experience. ISPEC 2022. Lecture Notes in Computer Science, vol 13620. Springer, Cham. https://doi.org/10.1007/978-3-031-21280-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-21280-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21279-6
Online ISBN: 978-3-031-21280-2
eBook Packages: Computer ScienceComputer Science (R0)