Skip to main content

Abstract

Energy poverty is a growing problem. It affects between 50 and 125 million people only in the European Union, requiring solutions to this problem to be addressed. The Internet of Things paradigm has become an effective monitoring solution. In this sense, the use of this paradigm enables the monitoring of energy poverty indicators in dwellings, in particular temperature and humidity. Current solutions are based on the use of quantitative data and graphs, which requires more effort and dedication on the part of the people in charge of such work. In this contribution we have presented an IoT architecture composed of edge-fog-cloud layers, the design of edge nodes and the use of fuzzy logic, which allows experts to make decisions in an intuitive way, by generating linguistic summaries.

This work has been partially supported by the Government of Spain through the project RTI2018-098979-A-I00 MCIN/ AEI/10.13039/501100011033/, ERDF “A way to make Europe” and the University of Jaén under Action 1 with reference EI_TIC1_2021.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alli, A.A., Alam, M.M.: The fog cloud of things: a survey on concepts, architecture, standards, tools, and applications. Internet Things 9, 100177 (2020). https://doi.org/10.1016/j.iot.2020.100177

    Article  Google Scholar 

  2. Espinilla, M., Medina, J., García-Fernández, Á.L., Campaña, S., Londoño, J.: Fuzzy intelligent system for patients with preeclampsia in wearable devices. Mobile Inf. Syst. 2017, 1–10 (2017). https://doi.org/10.1155/2017/7838464

    Article  Google Scholar 

  3. Gharibi, H., Mahvi, A.H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., Sowlat, M.H.: A novel approach in water quality assessment based on fuzzy logic. J. Environ. Manage. 112, 87–95 (2012). https://doi.org/10.1016/j.jenvman.2012.07.007

    Article  Google Scholar 

  4. González-Eguino, M.: Energy poverty: an overview. Renew. Sustain. Energy Rev. 47, 377–385 (2015). https://doi.org/10.1016/j.rser.2015.03.013

    Article  Google Scholar 

  5. Hurst, W., Montanez, C.A.C., Shone, N.: Towards an approach for fuel poverty detection from gas smart meter data using decision tree learning. In: Proceedings of the 2020 3rd International Conference on Information Management and Management Science (2020). https://doi.org/10.1145/3416028.3416034

  6. Karar, M.E., El-Garawany, A.H., El-Brawany, M.: Optimal adaptive intuitionistic fuzzy logic control of anti-cancer drug delivery systems. Biomed. Signal Process. Control 58, 101861 (2020). https://doi.org/10.1016/j.bspc.2020.101861

    Article  Google Scholar 

  7. López-Medina, M., Espinilla, M., Cleland, I., Nugent, C., Medina, J.: Fuzzy cloud-fog computing approach application for human activity recognition in smart homes. J. Intell. Fuzzy Syst. 38(1), 709–721 (2020). https://doi.org/10.3233/jifs-179443

    Article  Google Scholar 

  8. Madakam, S., Ramaswamy, R., Tripathi, S.: Internet of things (IoT): a literature review. J. Comput. Commun. 03(05), 164–173 (2015). https://doi.org/10.4236/jcc.2015.35021

    Article  Google Scholar 

  9. Martinez-Cruz, C., Rueda, A.J., Popescu, M., Keller, J.M.: New linguistic description approach for time series and its application to bed restlessness monitoring for eldercare. IEEE Trans. Fuzzy Syst. 30(4), 1048–1059 (2022). https://doi.org/10.1109/tfuzz.2021.3052107

    Article  Google Scholar 

  10. Nahmias, S.: Fuzzy variables. Fuzzy Sets Syst. 1(2), 97–110 (1978). https://doi.org/10.1016/0165-0114(78)90011-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In: 2017 IEEE International Systems Engineering Symposium (ISSE) (2017). https://doi.org/10.1109/syseng.2017.8088251

  12. Ni, K., et al.: Sensor network data fault types. ACM Trans. Sens. Netw. 5(3), 1–29 (2009). https://doi.org/10.1145/1525856.1525863

    Article  Google Scholar 

  13. Organization, W.H., et al.: Indoor environment: health aspects of air quality, thermal environment, light and noise. World Health Organization, Technical report (1990)

    Google Scholar 

  14. Papada, L., Kaliampakos, D.: Measuring energy poverty in Greece. Energy Policy 94, 157–165 (2016). https://doi.org/10.1016/j.enpol.2016.04.004

    Article  Google Scholar 

  15. Peláez-Aguilera, M.D., Espinilla, M., Olmo, M.R.F., Medina, J.: Fuzzy linguistic protoforms to summarize heart rate streams of patients with ischemic heart disease. Complexity 2019, 1–11 (2019). https://doi.org/10.1155/2019/2694126

    Article  Google Scholar 

  16. Robinson, J., Lee, K., Appiah, K., Yousef, Y.: Energy-aware systems for improving the well-being of older people by reducing their energy consumption. Int. J. Adv. Life Sci. 9(3 &4), 163–175 (2017)

    Google Scholar 

  17. Stanley, R., Moss, R.H., Stoecker, W.V., Aggarwal, C.: A fuzzy-based histogram analysis technique for skin lesion discrimination in dermatology clinical images. Comput. Med. Imaging Graph. 27(5), 387–396 (2003). https://doi.org/10.1016/s0895-6111(03)00030-2

    Article  Google Scholar 

  18. Farooq, M.U., Waseem, M., Mazhar, S., Khairi, A., Kamal, T.: A review on internet of things (IoT). Int. J. Comput. Appl. 113(1), 1–7 (2015). https://doi.org/10.5120/19787-1571

    Article  Google Scholar 

  19. Ullo, S.L., Sinha, G.R.: Advances in smart environment monitoring systems using IoT and sensors. Sensors 20(11), 3113 (2020). https://doi.org/10.3390/s20113113

    Article  Google Scholar 

  20. Verma, P.K., et al.: Machine-to-machine (M2M) communications: a survey. J. Netw. Comput. Appl. 66, 83–105 (2016). https://doi.org/10.1016/j.jnca.2016.02.016

    Article  Google Scholar 

  21. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 9(1), 43–80 (1975). https://doi.org/10.1016/0020-0255(75)90017-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Zadeh, L.A.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math. Appl. 9(1), 149–184 (1983). https://doi.org/10.1016/0898-1221(83)90013-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz, D., Medina, J., Montoro, A., López, J.L., Espinilla, M. (2023). Linguistic Summaries for Dwellings Energy Poverty Monitoring. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_69

Download citation

Publish with us

Policies and ethics