Skip to main content

Ambient Monitoring System for Contagion Risk Assessment of Airborne Transmission Diseases in the Hospitality Industry

  • Conference paper
  • First Online:
Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022) (UCAmI 2022)

Abstract

The hospitality industry (also called HoReCa in some European countries) is one of the most vulnerable sectors in the context of the COVID-19 pandemic. It is also one of the sectors of greatest economic relevance for many of the countries with strong reliance on tourism. Despite the fact that the scientific community has focused on the development of solutions that allow reducing the impact of the pandemic, its implementation in the hospitality industry has been so far residual.

In this work, we present a technological solution that allows to detect and quantify variables related to the risk of contagion of airborne diseases (e.g., COVID-19) through the monitoring of environmental variables (e.g., CO2, CO\(_{2{\text {-eq}}}\), suspended particulate matter, temperature, humidity, etc.). The acquired data is sent following the FIWARE NGSI “IndoorEnvironmentObserved” standard and then displayed through a Grafana interface, where real-time contagion risk indicators can be seen. The presented system has been developed within the HORECoV-21 project, where additional features such as automatic people counting, indoor social distance control, and virus detection systems in wastewater improve the quality of contagion risk predictions.

Pilot tests have been carried out, which show that the proposed solution can reduce the risk of contagion in the hospitality industry and the like, through graphs, visual indicators and flags that warn whenever it is necessary to take active measures (e.g., activating ventilation) thus increasing health safety in establishments and reducing the impact of the pandemic without incurring a high cost for businesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ibn-Mohammed, T., et al.: A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycl. 164, 105169 (2021). https://doi.org/10.1016/j.resconrec.2020.105169

  2. Pak, A., Adegboye, O.A., Adekunle, A.I., Rahman, K.M., McBryde, E.S., Eisen, D.P.: Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness. Front Public Health 8, 241 (2020). https://doi.org/10.3389/fpubh.2020.00241

    Article  Google Scholar 

  3. Pardal, P., Dias, R.T., Šuleř, P., Teixeira, N.M.D., Krulický, T.: Integration in central European capital markets in the context of the global COVID-19 pandemic. Equilibrium. Q. J. Econ. Econ. Policy 15, 627–650 (2020). https://doi.org/10.24136/EQ.2020.027

  4. Khan, A., Khan, N., Shafiq, M.: The economic impact of COVID-19 from a global perspective. Contemp. Econ. 15, 64–75 (2021). https://doi.org/10.5709/ce.1897-9254.436

    Article  Google Scholar 

  5. Diop, S., Asongu, S.A., Nnanna, J.: COVID-19 economic vulnerability and resilience indexes: global evidence. Int. Soc. Sci. J. 71(S1), 37–50 (2021). https://doi.org/10.1111/issj.12276

    Article  Google Scholar 

  6. Mikolai, J., Keenan, K., Kulu, H.: Intersecting household-level health and socio-economic vulnerabilities and the COVID-19 crisis: an analysis from the UK. SSM - Popul. Health 12, 100628 (2020). https://doi.org/10.1016/j.ssmph.2020.100628

  7. Baum, T., Hai, N.T.T.: Hospitality, tourism, human rights and the impact of COVID-19. Int. J. Contemp. Hospit. Manag. 32(7), 2397–2407 (2020). https://doi.org/10.1108/IJCHM-03-2020-0242

    Article  Google Scholar 

  8. García-Madurga, M.Á., Esteban-Navarro, M.Á., Morte-Nadal, T.: COVID key figures and new challenges in the HoReCa sector: the way towards a new supply-chain. Sustainability 13(12), 6884 (2021). https://doi.org/10.3390/su13126884

    Article  Google Scholar 

  9. Santamaria, D., Filis, G.: Tourism demand and economic growth in Spain: new insights based on the yield curve. Tour. Manage. 75, 447–459 (2019). https://doi.org/10.1016/j.tourman.2019.06.008

    Article  Google Scholar 

  10. Rokni, L.: The psychological consequences of COVID-19 pandemic in tourism sector: a systematic review. Iran J. Public Health 50(9), 1743–1756 (2021). https://doi.org/10.18502/ijph.v50i9.7045

  11. HORECoV-21: Horecovid website (2021). https://horecovid.com/en/home/

  12. Alhmiedat, T., Aborokbah, M.: Social distance monitoring approach using wearable smart tags. Electronics 10(19), 2435 (2021). https://doi.org/10.3390/electronics10192435

    Article  Google Scholar 

  13. Del Rio, C., Collins, L.F., Malani, P.: Long-term health consequences of COVID-19. JAMA 324(17), 1723–1724 (2020). https://doi.org/10.1001/jama.2020.19719

    Article  Google Scholar 

  14. Lv, M., e al.: on behalf of the COVID-19 evidence, recommendations working group: coronavirus disease (COVID-19): a scoping review. Eurosurveillance 25(15), 2000125 (2020). https://doi.org/10.2807/1560-7917.ES.2020.25.15.2000125

  15. Tropea, M., De Rango, F.: COVID-19 in Italy: current state, impact and ICT-based solutions. IET Smart Cities 2(2), 74–81 (2020). https://doi.org/10.1049/iet-smc.2020.0052

    Article  Google Scholar 

  16. Law, R., Buhalis, D., Cobanoglu, C.: Progress on information and communication technologies in hospitality and tourism. Int. J. Contemp. Hosp. Manag. (2014). https://doi.org/10.1108/IJCHM-08-2013-0367

    Article  Google Scholar 

  17. Saini, J., Dutta, M., Marques, G.: Indoor air quality monitoring systems based on internet of things: a systematic review. Int. J. Environ. Res. Public Health 17, 4942 (2020). https://doi.org/10.3390/ijerph17144942

    Article  Google Scholar 

  18. Mumtaz, R., et al.: Internet of things (IoT) based indoor air quality sensing and predictive analytic-a COVID-19 perspective. Electronics 10, 184 (2021). https://doi.org/10.3390/electronics10020184

    Article  Google Scholar 

  19. Burridge, H.C., Fan, S., Jones, R.L., Noakes, C.J., Linden, P.F.: Predictive and retrospective modelling of airborne infection risk using monitored carbon dioxide. Indoor Built Environ. 31(5), 1363–1380 (2022). https://doi.org/10.1177/1420326X211043564

    Article  Google Scholar 

  20. Peng, Z., Jimenez, J.L.: Exhaled CO2 as a COVID-19 infection risk proxy for different indoor environments and activities. Environ. Sci. Technol. Lett. 8(5), 392–397 (2021). https://doi.org/10.1021/acs.estlett.1c00183

    Article  Google Scholar 

  21. Estrella, E.P., Tolosa, M.T.S., Infantado, M.A., Dans, L.F.: Philippine COVID-19 living clinical practice guidelines: should carbon dioxide (CO2) monitors be used to reduce transmission of COVID-19? www.psmid.org/wp-content/uploads/2021/12/NPI-CO2-monitors_EDITEDFINAL-LFD-121121.pdf

  22. Di Gilio, A., et al.: CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission. Environ. Res. 202, 111560 (2021). https://doi.org/10.1016/j.envres.2021.111560

  23. Li, B., Cai, W.: A novel co2-based demand-controlled ventilation strategy to limit the spread of covid-19 in the indoor environment. Build. Environ. 219, 109232 (2022). https://doi.org/10.1016/j.buildenv.2022.109232

  24. Pang, Z., Hu, P., Lu, X., Wang, Q., O’Neill, Z.: A smart CO2-based ventilation control framework to minimize the infection risk of COVID-19 In public buildings (2021)

    Google Scholar 

  25. Zhang, D., Bluyssen, P.M.: Exploring the possibility of using CO2 as a proxy for exhaled particles to predict the risk of indoor exposure to pathogens. Indoor Built Environ. 1420326X221110043 (2022). https://doi.org/10.1177/1420326X221110043

  26. Schade, W., Reimer, V., Seipenbusch, M., Willer, U.: Experimental investigation of aerosol and CO2 dispersion for evaluation of COVID-19 infection risk in a concert hall. Int. J. Environ. Res. Public Health 18(6), 3037 (2021). https://doi.org/10.3390/ijerph18063037

    Article  Google Scholar 

  27. Qian, M., Jiang, J.: COVID-19 and social distancing. J. Public Health 30(1), 259–261 (2022). https://doi.org/10.1007/s10389-020-01321-z

    Article  Google Scholar 

  28. Greenstone, M., Nigam, V.: Does social distancing matter? ERN: allocative efficiency; cost-benefit analysis; externalities (topic) (2020). https://doi.org/10.2139/ssrn.3561244

  29. Thunström, L., Newbold, S.C., Finnoff, D., Ashworth, M., Shogren, J.F.: The benefits and costs of using social distancing to flatten the curve for COVID-19. J. Benefit-Cost Anal. 11(2), 179–195 (2020). https://doi.org/10.1017/bca.2020.12

    Article  Google Scholar 

  30. Farkas, K., Hillary, L.S., Malham, S.K., McDonald, J.E., Jones, D.L.: Wastewater and public health: the potential of wastewater surveillance for monitoring COVID-19. Curr. Opin. Environ. Sci. Health 17, 14–20 (2020). https://doi.org/10.1016/j.coesh.2020.06.001. Environmental Health: COVID-19

  31. Daughton, C.G.: Wastewater surveillance for population-wide COVID-19: the present and future. Sci. Total Environ. 736, 139631 (2020). https://doi.org/10.1016/j.scitotenv.2020.139631

    Article  Google Scholar 

  32. Mitra, B., Luckhoff, C., Mitchell, R.D., O’Reilly, G.M., Smit, D.V., Cameron, P.A.: Temperature screening has negligible value for control of COVID-19. Emerg. Med. Australas. 32(5), 867–869 (2020). https://doi.org/10.1111/1742-6723.13578

    Article  Google Scholar 

  33. Stave, G.M., Smith, S.E., Hymel, P.A., Heron, R.J.: Worksite temperature screening for COVID-19. J. Occup. Environ. Med. 63(8), 638 (2021). https://doi.org/10.1097/JOM.0000000000002245

    Article  Google Scholar 

  34. Espressif: Esp32 modules. www.espressif.com/en/products/modules/esp32

  35. Soni, D., Makwana, A.: A survey on MQTT: a protocol of internet of things (IoT). In: International Conference on Telecommunication, Power Analysis and Computing Techniques (ICTPACT-2017), vol. 20, pp. 173–177 (2017)

    Google Scholar 

  36. Rachit, Bhatt, S., Ragiri, P.R.: Security trends in internet of things: a survey. SN Appl. Sci. 3(1), 121 (2021), https://doi.org/10.1007/s42452-021-04156-9

  37. Grafana: The open observability platform. https://grafana.com/

Download references

Acknowledgements

We thank all members of the HORECoV-21 consortium (reference 2I20SAE00082) for their role in the collaborative development of the research project. HORECoV-21 is a project funded by the Comunidad Autónoma de la Región de Murcia and the Consejería de Desarrollo Económico, Turismo y Empleo inside the Programa Operativo FEDER Región de Murcia 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Leal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leal, J.L., Bleda, A.L., Beteta, M.Á., Maestre, R., Abbenante, S.E. (2023). Ambient Monitoring System for Contagion Risk Assessment of Airborne Transmission Diseases in the Hospitality Industry. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_70

Download citation

Publish with us

Policies and ethics