Skip to main content

Overcoming the Lack of Data to Improve Prediction and Treatment of Individuals with Autistic Spectrum Disorder and Attention Deficit Hyperactivity Disorder

  • Conference paper
  • First Online:
Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022) (UCAmI 2022)

Abstract

The problem of lack of data remains a major drawback regardless of the continuous evolution of machine learning and deep learning models. This paper presents a modular and scalable architecture for the prediction and treatment of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this architecture, therapists will be able to collect data from individuals from anywhere and at anytime, thanks to mobile devices, which will enable personalised monitoring. One of the main objectives of this ongoing project, which has a very widespread international projection within the framework of social inclusion, is the creation of a new collection of data due to the lack of data in this area. As a result, we will be able to place it in important repositories and specialised journals and thereby make it available to the scientific community. This architecture has been evaluated with several supervised and unsupervised machine learning algorithms in order to identify possible candidates for ASD/ADHD diagnosis. The initial results are very encouraging despite the small volume of data because they allow the possibility of developing personalised dashboards, which specialists can adapt to the personalised treatment of each individual according to the indicators obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/index.php (visited on 1 July 2022).

  2. 2.

    https://www.kaggle.com/ (visited on 1 July 2022).

References

  1. Kim, D., Sun, Y., Wendi, D., Jiang, Z., Liong, S.-Y., Gourbesville, P.: Flood modelling framework for Kuching city, Malaysia: overcoming the lack of data. In: Gourbesville, P., Cunge, J., Caignaert, G. (eds.) Advances in Hydroinformatics. SW, pp. 559–568. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7218-5_39

    Chapter  Google Scholar 

  2. Cockburn, M.: Application and prospective discussion of machine learning for the management of dairy farms. Animals 10(9), 1690 (2020)

    Article  Google Scholar 

  3. Jones, D.E., Ghandehari, H., Facelli, J.C.: A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput. Methods Programs Biomed. 132, 93–103 (2016)

    Article  Google Scholar 

  4. Cai, L., Zhu, Y.: The challenges of data quality and data quality assessment in the big data era. Data Sci. J. 14 (2015)

    Google Scholar 

  5. Peral, J., Gil, D., Rotbei, S., Amador, S., Guerrero, M., Moradi, H.: A machine learning and integration based architecture for cognitive disorder detection used for early autism screening. Electronics 9(3), 516 (2020)

    Article  Google Scholar 

  6. Mak, K.K., Lee, K., Park, C.: Applications of machine learning in addiction studies: a systematic review. Psychiatry Res. 275, 53–60 (2019)

    Article  Google Scholar 

  7. Hyde, K.K., et al.: Applications of supervised machine learning in autism spectrum disorder research: a review. Rev. J. Autism Dev. Disord. 6(2), 128–146 (2019)

    Article  Google Scholar 

  8. Shatte, A.B., Hutchinson, D.M., Teague, S.J.: Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 49(9), 1426–1448 (2019)

    Article  Google Scholar 

  9. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013). ISO 690

  10. Wall, D.P., Kosmicki, J., Deluca, T.F., Harstad, E., Fusaro, V.A.: Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl. Psychiatry 2(4), e100–e100 (2012)

    Article  Google Scholar 

  11. Kosmicki, J.A., Sochat, V., Duda, M., Wall, D.P.: Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Transl. Psychiatry 5(2), e514–e514 (2015)

    Article  Google Scholar 

  12. Duda, M., Ma, R., Haber, N., Wall, D.P.: Use of machine learning for behavioral distinction of autism and ADHD. Transl. Psychiatry 6, e732 (2015). ISO 690

    Article  Google Scholar 

  13. Crippa, A., et al.: Use of machine learning to identify children with autism and their motor abnormalities. J. Autism Dev. Disord. 45(7), 2146–2156 (2015)

    Article  Google Scholar 

  14. Bone, D., Bishop, S.L., Black, M.P., Goodwin, M.S., Lord, C., Narayanan, S.S.: Use of machine learning to improve autism screening and diagnostic instruments: effectiveness, efficiency, and multi-instrument fusion. J. Child Psychol. Psychiatry 57(8), 927–937 (2016)

    Article  Google Scholar 

  15. Usta, M.B., et al.: Use of machine learning methods in prediction of short-term outcome in autism spectrum disorders. Psychiatry Clin. Psychopharmacol. 29(3), 320–325 (2019)

    Article  Google Scholar 

  16. Bone, D., Goodwin, M.S., Black, M.P., Lee, C.C., Audhkhasi, K., Narayanan, S.: Applying machine learning to facilitate autism diagnostics: pitfalls and promises. J. Autism Dev. Disord. 45(5), 1121–1136 (2015)

    Article  Google Scholar 

  17. Oreski, D., Oreski, S., Klicek, B.: Effects of dataset characteristics on the performance of feature selection techniques. Appl. Soft Comput. 52, 109–119 (2017)

    Article  Google Scholar 

  18. Mitchell, T.M., Mitchell, T.M.: Machine Learning, vol. 1, No. 9. McGraw-Hill, New York (1997)

    Google Scholar 

  19. Sathian, B., Sreedharan, J., Baboo, S.N., Sharan, K., Abhilash, E.S., Rajesh, E.: Relevance of sample size determination in medical research. Nepal J. Epidemiol. 1(1), 4–10 (2010)

    Article  Google Scholar 

  20. R.: Datacleaning. Limpieza de datos: definición, técnicas, importancia en Data Science. DataScientest (2022)

    Google Scholar 

  21. Integración de datos: concepto e importancia en la empresa actual. PowerData (2022)

    Google Scholar 

  22. Fellbaum, C.: WordNet. In: Poli, R., Healy, M., Kameas, A. (eds) Theory and Applications of Ontology: Computer Applications, pp 2310–243. Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-8847-5_10

  23. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25, 158–176 (2011)

    Article  Google Scholar 

  24. Suthaharan, S.: Machine Learning Models and Algorithms for Big Data Classification. ISIS, vol. 36. Springer, Boston, MA (2016). https://doi.org/10.1007/978-1-4899-7641-3

    Book  MATH  Google Scholar 

  25. Bhardwaj, A.: What is a Perceptron? - Basics of Neural Networks. Towards Data Science (2011)

    Google Scholar 

  26. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning. STS, Springer, New York (2021). https://doi.org/10.1007/978-1-0716-1418-1

    Book  MATH  Google Scholar 

  27. Manjarrés, J.C.: 8 algoritmos de agrupación en clústeres en el aprendizaje automático que todos los científicos de datos deben conocer. freeCodeCamp (2021)

    Google Scholar 

  28. Bora, A.: ML: BIRCH Clustering. GeeksForGeeks (2022)

    Google Scholar 

  29. Contreras, O.: Gaussian Mixture Models Explained. Towards Data Science (2019)

    Google Scholar 

Download references

Acknowledgment

This research has been partially funded by the BALLADEER project (PROMETEO/2021/088) from the Consellería de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana and by the AETHER-UA (PID2020-112540RB-C43) project from the Spanish Ministry of Science and Innovation. This work has been also partially funded by “La Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital”, under the project “Development of an architecture based on machine learning and data mining techniques for the prediction of indicators in the diagnosis and intervention of autism spectrum disorder. AICO/2020/117”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Peral or David Gil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

del Mar Guillén, M., Amador, S., Peral, J., Gil, D., Elouali, A. (2023). Overcoming the Lack of Data to Improve Prediction and Treatment of Individuals with Autistic Spectrum Disorder and Attention Deficit Hyperactivity Disorder. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_75

Download citation

Publish with us

Policies and ethics