Skip to main content

Reliability Analysis of Smart Home Sensor Systems Based on Probabilistic Model Checking

  • Conference paper
  • First Online:
Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022) (UCAmI 2022)

Abstract

With the rapid development of IoT in recent years, Smart Home, one of the IoT application markets, has also been gaining popularity. The emergence of Smart Homes has brought convenience to people’s lives, especially for people who live alone with physical illness. Smart Home users normally have higher expectations for reliability and safety of sensor systems, particularly in light of how complicated and uncertain the living environment is. The present work attempts to propose a data-knowledge integrated solution to analyze, model and evaluate the reliability of sensor systems in a smart home by combining quantitative reliability analysis and probabilistic model checking. Probabilistic model checking techniques use logical reasoning to check quantitative properties (as system requirements) and provide mathematical guarantee for them. More specifically, Smart Home Sensor Systems (SHSS) is described as a Markov Chain, commonly used probabilistic model, which models the system behaviour (e.g., probabilistic choice of state transition), and SHSS reliability properties are defined by Probabilistic Computation Tree Logic (PCTL). These choices of model and specification formula allow us to use one of the most recently developed open source probabilistic model checkers, PRISM, to perform the model checking of reliability verification task in SHSS. A real world smart home dataset (Van Kasteren dataset) is employed along with PRISM to illustrate the modeling approach and demonstrate the feasibility and applicability of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madakam, S., Lake, V., Lake, V., et al.: Internet of Things (IoT): a literature review. J. Comput. Commun. 3(05), 164 (2015)

    Article  Google Scholar 

  2. Stojkoska, B.L.R., Trivodaliev, K.V.: A review of Internet of Things for smart home: challenges and solutions. J. Clean. Prod. 140, 1454–1464 (2017)

    Article  Google Scholar 

  3. Gao, H., Zhou, L., Kim, J.Y., et al.: The behavior guidance and abnormality detection for A-MCI patients under wireless sensor network. ACM Trans. Sensor Netw. (2021)

    Google Scholar 

  4. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal verification in automotive industry: enablers and obstacles. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03427-6_14

    Chapter  Google Scholar 

  5. Clarke, E.M.: Model checking. In: Ramesh, S., Sivakumar, G. (eds.) FSTTCS 1997. LNCS, vol. 1346, pp. 54–56. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0058022

    Chapter  Google Scholar 

  6. Whittaker, J.A., Thomason, M.G.: A Markov chain model for statistical software testing. IEEE Trans. Softw. Eng. 20(10), 812–824 (1994)

    Article  Google Scholar 

  7. Sultan, K., Bentahar, J., El-Menshawy, M.: Model checking probabilistic social commitments for intelligent agent communication. Appl. Soft Comput. 22, 397–409 (2014)

    Article  Google Scholar 

  8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of Probabilistic real-time systems. In Proceedings 23rd International Conference on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp. 585–591. Springer (2011)

    Google Scholar 

  9. Das, S.K., Cook, D.J., Battacharya, A., Heierman, E.O., Lin, T.-Y.: The role of prediction algorithms in the MavHome smart home architecture. IEEE Wirel. Commun. 9(6), 77–84 (2002). https://doi.org/10.1109/MWC.2002.1160085

    Article  Google Scholar 

  10. Rialle, V., Duchene, F., Noury, N., et al.: Health “smart’’ home: information technology for patients at home. Telemed. J. E-Health 8(4), 395–409 (2002)

    Article  Google Scholar 

  11. Hong, A., Nam, C., Kim, S.: What will be the possible barriers to consumers’ adoption of smart home services? Telecommun. Policy 44(2), 101867 (2020)

    Article  Google Scholar 

  12. Makhadmeh, S.N., Al-Betar, M.A., Alyasseri, Z.A.A., et al.: Smart home battery for the multi-objective power scheduling problem in a smart home using grey wolf optimizer. Electronics 10(4), 447 (2021)

    Article  Google Scholar 

  13. Ramanujam, E., Perumal, T., Padmavathi, S.: Human activity recognition with smartphone and wearable sensors using deep learning techniques: a review. IEEE Sensors J. 21(12), 13029–13040 (2021). https://doi.org/10.1109/JSEN.2021.3069927

    Article  Google Scholar 

  14. Li, X., He, Y., Fioranelli, F., et al.: Semisupervised human activity recognition with radar micro-Doppler signatures. IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2021). https://doi.org/10.1109/TGRS.2021.3090106

    Article  Google Scholar 

  15. Birnbach, S., Eberz, S., Martinovic, I.: Haunted house: physical smart home event verification in the presence of compromised sensors. ACM Trans. Internet Things 3(3), 1–28 (2022). https://doi.org/10.1145/3506859

    Article  Google Scholar 

  16. Achaji, L., Daher, M., El Najjar, M.E.B., et al.: Multi-sensor data fusion for smart home reliable pedestrian localization. In: 2021 IEEE 3rd International Multidisciplinary Conference on Engineering Technology (IMCET), pp. 144–149. IEEE (2021). https://doi.org/10.1109/IMCET53404.2021.9665594

  17. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative analysis with the probabilistic model checker PRISM. Electr. Notes Theor. Comput. Sci. 153(2), 5–31 (2006)

    Article  Google Scholar 

  18. Gao, M., Wang, K., He, L.: Probabilistic model checking and scheduling implementation of an energy router system in energy Internet for green cities. IEEE Trans. Ind. Inf. 14(4), 1501–1510 (2018)

    Article  Google Scholar 

  19. Baouya, A., Mohamed, O.A., Ouchani, S., et al.: Reliability-driven automotive software deployment based on a parametrizable probabilistic model checking. Expert Syst. Appl. 174, 114572 (2021)

    Article  Google Scholar 

  20. l’Yvonnet, T., De Maria, E., Moisan, S., et al.: Probabilistic model checking for human activity recognition in medical serious games. Sci. Comput. Program. 206, 102629 (2021). https://doi.org/10.1016/j.scico.2021.102629

  21. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. John Wiley & Sons, Hoboken (2009)

    MATH  Google Scholar 

  22. van Kasteren, T., Noulas, A., Englebienne, G., and Kröse, B.: Accurate activity recognition in a home setting. In: Proceedings of the 10th International Conference on Ubiquitous Computing - UbiComp 2008, p. 1 (2008). https://doi.org/10.1145/1409635.1409637

  23. Moore, S.J. , Nugent, C.D. , Zhang, S. , Cleland, I. , Sani, S. , Healing, A.: A markov model to detect sensor failure in IoT environments, In: IEEE World Congress on Services (SERVICES), pp.13C16. IEEE (2020). https://doi.org/10.1109/SERVICES48979.2020.00016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Liu, J., Nugent, C.D., Moore, S.J., Xu, Y. (2023). Reliability Analysis of Smart Home Sensor Systems Based on Probabilistic Model Checking. In: Bravo, J., Ochoa, S., Favela, J. (eds) Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022). UCAmI 2022. Lecture Notes in Networks and Systems, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-031-21333-5_78

Download citation

Publish with us

Policies and ethics