Skip to main content

DLC: An Optimization Framework for Full-State Quantum Simulation

  • Conference paper
  • First Online:
Network and Parallel Computing (NPC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13615))

Included in the following conference series:

  • 785 Accesses

Abstract

Quantum simulation on classical computers is one of the main approaches to evaluate quantum computation devices and develop quantum algorithms. Some quantum simulators have been proposed, mainly divided into two categories: full-state simulators and tensor network simulators. The former consumes a lot of memory to hold the quantum state vectors. Therefore, the time overheads cost by calculation are much lower than that cost by memory-accesses and communications. Traditional optimization techniques such as latency hiding are not suitable for quantum simulation, and high-performance devices like GPGPUs cannot be fully utilized. This paper proposes DLC (Data Locality and Communication) optimizer to perform data locality and data layout optimizations. Both optimizations are based on the identification of amplitudes that can be processed by a sequence of quantum gates. They not only increase the data locality on the GPU side, but also reduces the date communication overheads and the times of data exchanges. In addition, layout data dynamically can significantly reduce the memory space on the GPGPU side for data communication. We evaluate our scheme on a small-scale CPU + GPU cluster. Experimental results show that for quantum circuits having 30–34 qubits, the ratio of communication to calculation increases from 12 to 79%, and a performance improvement 1.25–7× is achieved. Theoretically, our optimizations will be more effective as the number of qubits increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biamonte, J., Bergholm, V.: Tensor networks in a nutshell. arXiv pre-print arXiv:1708.00006 (2017)

  2. Avila, A., Maron, A., Reiser, R., Pilla, M., Yamin, A.: GPU-aware distributed quantum simulation. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, New York, NY, USA, pp. 860–865 (2014). https://doi.org/10.1145/2554850.2554892

  3. Kelly, A.: Simulating quantum computers using OpenCL. arXiv preprint arXiv:1805.00988 (2018)

  4. A Preview of Bristlecone, Google’s New Quantum Processor. [Online]. http://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

  5. Villalonga, B., et al.: Establishing the quantum supremacy frontier with a 281 Pflop/s simulation. Quant. Sci. Technol. 5(3), 034003 (2020)

    Google Scholar 

  6. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature. 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

  7. Wu, X.-C., et al.: Full-state quantum circuit simulation by using data compression. In: SC ‘19: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, New York, NY, USA (2019). https://doi.org/10.1145/3295500.3356155

  8. Boixo, S., Isakov, S.V., Smelyanskiy, V.N., Neven, H.: Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:1712.05384 (2017)

  9. Chen, J., Zhang, F., Huang, C., Newman, M., Shi, Y.: Classical simulation of intermediate-size quantum circuits. arXiv preprint arXiv:1805.01450 (2018)

  10. Avila, A., Reiser, R.H., Pilla, M.L., Yamin, A.C.: Optimizing D-GM quantum computing by exploring parallel and distributed quantum simulations under GPUs arquitecture. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 5146–5153 (2016).

    Google Scholar 

  11. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum. 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  12. Doi, J., Takahashi, H., Raymond, R., Imamichi, T., Horii, H.: Quantum computing simulator on a heterogenous HPC system. In: Proceedings of the 16th ACM International Conference on Computing Frontiers, New York, NY, USA, pp. 85–93 (2019). https://doi.org/10.1145/3310273.3323053

  13. Jones, T., Brown, A., Bush, I., Benjamin, S.C.: QuEST and high performance simulation of quantum computers. Sci. Rep. 9(1), 1–11 (July 2019). https://doi.org/10.1038/s41598-019-47174-9

  14. Markov, I.L., Shi, Y.: Simulating quantum computation by contracting tensor networks. SIAM J. Comput. 38(3), 963–981 (2008). https://doi.org/10.1137/050644756

  15. Pednault, E., et al.: Breaking the 49-qubit barrier in the simulation of quantum circuits. 15. arXiv preprint arXiv:1710.05867 (2017)

  16. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford digital library metadata architecture. Int. J. Digit. Libr. 1, 108–121 (1997)

    Google Scholar 

  17. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002). https://doi.org/10.1103/RevModPhys.74.145

  18. Ciliberto, C., et al.: Quantum machine learning: a classical perspective. Proc. R. Soc. A. 474(2209), 20170551 (2018). https://doi.org/10.1098/rspa.2017.0551

  19. Suzuki, Y., et al.: Qulacs: a fast and versatile quantum circuit simulator for research purpose. Quantum. 5, 559 (2021). https://doi.org/10.22331/q-2021-10-06-559

  20. Zhang, C., Song, Z., Wang, H., Rong, K., Zhai, J.: HyQuas: hybrid partitioner based quantum circuit simulation system on GPU. In: Proceedings of the ACM International Conference on Supercomputing, New York, NY, USA, pp. 443–454 (2021). https://doi.org/10.1145/3447818.3460357

  21. Zhang, P., Yuan, J., Lu, X.: Quantum Computer Simulation on Multi-GPU Incorporating Data Locality. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9528, pp. 241–256. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27119-4_17

    Chapter  Google Scholar 

  22. Zhang, Y., Ni, Q.: Recent advances in quantum machine learning. Quant. Eng. 2(1), e34 (2020). https://doi.org/10.1002/que2.34

  23. Aleksandrowicz, G., et al.: Qiskit: an open-source framework for quantum computing. 16 (2019). Accessed March

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, Z., Li, T., Shen, L. (2022). DLC: An Optimization Framework for Full-State Quantum Simulation. In: Liu, S., Wei, X. (eds) Network and Parallel Computing. NPC 2022. Lecture Notes in Computer Science, vol 13615. Springer, Cham. https://doi.org/10.1007/978-3-031-21395-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21395-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21394-6

  • Online ISBN: 978-3-031-21395-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics