Skip to main content

Convolutional Neural Networks Applied to Emotion Analysis in Texts: Experimentation from the Mexican Context

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2022)

Abstract

This work is twofold. First, it presents the state of the art of deep learning applied emotion analysis and sentiment analysis, highlighting the convolutional neural networks behavior over other techniques. Second, it presents experimentation on a convolutional neural network performance in the emotion analysis for the Mexican context, considering different architectures (with different number of neurons and different optimizers). The accuracy achieved in the proposed computational models is 0.9828 and 0.8943 with loss values of 0.1268 and 0.2387 respectively; however, the confusion matrices support the option of improving these models, giving the possibility of improving the values obtained and achieving greater accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banafa, A.: ¿Qué es la computación afectiva? (2018). https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/

  2. Bisquerra-Alzina, R.: Psicopedagogía de las emociones. Sintesis, Madrid (2009)

    Google Scholar 

  3. Casas García, A., Villena Román, J.: Sistema de Análisis Automático de Sentimientos Basado en Procesamiento del Lenguaje Natural. Ph.D. thesis, Universidad Carlos III de Madrid (2014)

    Google Scholar 

  4. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, pp. 1237–1242 (2013). https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3098/3425

  5. Dubiau, L., Ale, J.M.: Análisis de Sentimientos sobre un Corpus en Español: Experimentación con un Caso de Estudio. In: XIV Argentine Symposium on Artificial Intelligence (ASAI)-JAIIO 42 (2013)

    Google Scholar 

  6. Fernández, Y.: Qué es IFTTT y cómo lo puedes utilizar para crear automatismos en tus aplicaciones (2019). https://www.xataka.com/basics/que-ifttt-como-puedes-utilizar-para-crear-automatismos-tus-aplicaciones

  7. Francisco, V.: Identificación Automática del Contenido Afectivo de un Texto y su Papel en la Presentación de Información. Ph.D. thesis, Universidad Complutense de Madrid (2008)

    Google Scholar 

  8. Freire, E., Silva, S.: Redes neuronales. Programa de Visión Artificial (2019). https://bootcampai.medium.com/redes-neuronales-13349dd1a5bb

  9. Gavilán, I.: Catálogo de componentes de redes neuronales (y IV): optimizadores (2020). https://ignaciogavilan.com/catalogo-de-componentes-de-redes-neuronales-y-iv-optimizadores/

  10. Konate, A., Du, R.: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques. Wuhan Univ. J. Nat. Sci. 23(3), 237–243 (2018). https://doi.org/10.1007/s11859-018-1316-z

    Article  Google Scholar 

  11. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. IEEE (1998). http://ieeexplore.ieee.org/document/726791/#full-text-section

  12. Lee, M.S., Lee, Y.K., Pae, D.S., Lim, M.T., Kim, D.W., Kang, T.K.: Fast emotion recognition based on single pulse PPG signal with convolutional neural network. Appl. Sci. (Switz.) 9(16), 3355 (2019)

    Google Scholar 

  13. PlatoAiStream: BigData: Una guía completa sobre optimizadores de aprendizaje profundo (2021). https://zephyrnet.com/es/a-comprehensive-guide-on-deep-learning-optimizers/

  14. Plutchik, R.: The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001). http://www.jstor.org/stable/27857503

  15. Poincaré: Análisis de sentimiento de texto basado en CNN - programador clic (2020). https://programmerclick.com/article/71111623446/

  16. Sarin, E., Vashishtha, S., Kaur, S., et al.: SentiSpotMusic: a music recommendation system based on sentiment analysis. In: 2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), pp. 373–378 (2022)

    Google Scholar 

  17. Sarmiento-Ramos, J.L.: Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica. Revista UIS Ingenierías 19(4), 1–18 (2020)

    Google Scholar 

  18. Shi, S., Zhao, M., Guan, J.U.N., Huang, H.: Multi-features group emotion analysis based on CNN for Weibo events. DEStech Trans. Comput. Sci. Eng. L(cii), 358–368 (2017)

    Google Scholar 

  19. Softtek: Las CNN mejoran el análisis de imágenes (2021). https://softtek.eu/tech-magazine/artificial-intelligence/las-redes-neuronales-de-convolucion-cnn-mejoran-el-analisis-de-imagenes/

  20. Tripto, N.I., Ali, M.E.: Detecting multilabel sentiment and emotions from Bangla YouTube comments. In: 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6 (2018)

    Google Scholar 

  21. Valle-Cruz, D., Lopez-Chau, A., Sandoval-Almazan, R.: Impression analysis of trending topics in Twitter with classification algorithms. In Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance, pp. 430–441 (2020)

    Google Scholar 

  22. Velasco, L.: Optimizadores en redes neuronales profundas: un enfoque práctico (2020). https://velascoluis.medium.com/optimizadores-en-redes-neuronales-profundas-un-enfoque-práctico-819b39a3eb5

  23. Yaqub, M., et al.: State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci. 10(7), 1–19 (2020)

    Article  Google Scholar 

  24. Yudita, S.I., Mantoro, T., Ayu, M.A.: Deep face recognition for imperfect human face images on social media using the CNN method. In: 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), pp. 412–417. IEEE (2021)

    Google Scholar 

  25. Zatarain Cabada, R., Barrón Estrada, M.L., Cárdenas López, H.M.: Reconocimiento multimodal de emociones orientadas al aprendizaje. Res. Comput. Sci. 148(7), 153–165 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Carlos Garduño-Miralrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garduño-Miralrio, JC., Valle-Cruz, D., López-Chau, A., Rojas-Hernández, R. (2022). Convolutional Neural Networks Applied to Emotion Analysis in Texts: Experimentation from the Mexican Context. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21422-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21421-9

  • Online ISBN: 978-3-031-21422-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics