Abstract
This work is twofold. First, it presents the state of the art of deep learning applied emotion analysis and sentiment analysis, highlighting the convolutional neural networks behavior over other techniques. Second, it presents experimentation on a convolutional neural network performance in the emotion analysis for the Mexican context, considering different architectures (with different number of neurons and different optimizers). The accuracy achieved in the proposed computational models is 0.9828 and 0.8943 with loss values of 0.1268 and 0.2387 respectively; however, the confusion matrices support the option of improving these models, giving the possibility of improving the values obtained and achieving greater accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banafa, A.: ¿Qué es la computación afectiva? (2018). https://www.bbvaopenmind.com/tecnologia/mundo-digital/que-es-la-computacion-afectiva/
Bisquerra-Alzina, R.: Psicopedagogía de las emociones. Sintesis, Madrid (2009)
Casas García, A., Villena Román, J.: Sistema de Análisis Automático de Sentimientos Basado en Procesamiento del Lenguaje Natural. Ph.D. thesis, Universidad Carlos III de Madrid (2014)
Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M.: Flexible, high performance convolutional neural networks for image classification. In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, pp. 1237–1242 (2013). https://www.aaai.org/ocs/index.php/IJCAI/IJCAI11/paper/viewFile/3098/3425
Dubiau, L., Ale, J.M.: Análisis de Sentimientos sobre un Corpus en Español: Experimentación con un Caso de Estudio. In: XIV Argentine Symposium on Artificial Intelligence (ASAI)-JAIIO 42 (2013)
Fernández, Y.: Qué es IFTTT y cómo lo puedes utilizar para crear automatismos en tus aplicaciones (2019). https://www.xataka.com/basics/que-ifttt-como-puedes-utilizar-para-crear-automatismos-tus-aplicaciones
Francisco, V.: Identificación Automática del Contenido Afectivo de un Texto y su Papel en la Presentación de Información. Ph.D. thesis, Universidad Complutense de Madrid (2008)
Freire, E., Silva, S.: Redes neuronales. Programa de Visión Artificial (2019). https://bootcampai.medium.com/redes-neuronales-13349dd1a5bb
Gavilán, I.: Catálogo de componentes de redes neuronales (y IV): optimizadores (2020). https://ignaciogavilan.com/catalogo-de-componentes-de-redes-neuronales-y-iv-optimizadores/
Konate, A., Du, R.: Sentiment analysis of code-mixed Bambara-French social media text using deep learning techniques. Wuhan Univ. J. Nat. Sci. 23(3), 237–243 (2018). https://doi.org/10.1007/s11859-018-1316-z
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied to document recognition. IEEE (1998). http://ieeexplore.ieee.org/document/726791/#full-text-section
Lee, M.S., Lee, Y.K., Pae, D.S., Lim, M.T., Kim, D.W., Kang, T.K.: Fast emotion recognition based on single pulse PPG signal with convolutional neural network. Appl. Sci. (Switz.) 9(16), 3355 (2019)
PlatoAiStream: BigData: Una guía completa sobre optimizadores de aprendizaje profundo (2021). https://zephyrnet.com/es/a-comprehensive-guide-on-deep-learning-optimizers/
Plutchik, R.: The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001). http://www.jstor.org/stable/27857503
Poincaré: Análisis de sentimiento de texto basado en CNN - programador clic (2020). https://programmerclick.com/article/71111623446/
Sarin, E., Vashishtha, S., Kaur, S., et al.: SentiSpotMusic: a music recommendation system based on sentiment analysis. In: 2021 4th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), pp. 373–378 (2022)
Sarmiento-Ramos, J.L.: Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica. Revista UIS Ingenierías 19(4), 1–18 (2020)
Shi, S., Zhao, M., Guan, J.U.N., Huang, H.: Multi-features group emotion analysis based on CNN for Weibo events. DEStech Trans. Comput. Sci. Eng. L(cii), 358–368 (2017)
Softtek: Las CNN mejoran el análisis de imágenes (2021). https://softtek.eu/tech-magazine/artificial-intelligence/las-redes-neuronales-de-convolucion-cnn-mejoran-el-analisis-de-imagenes/
Tripto, N.I., Ali, M.E.: Detecting multilabel sentiment and emotions from Bangla YouTube comments. In: 2018 International Conference on Bangla Speech and Language Processing (ICBSLP), pp. 1–6 (2018)
Valle-Cruz, D., Lopez-Chau, A., Sandoval-Almazan, R.: Impression analysis of trending topics in Twitter with classification algorithms. In Proceedings of the 13th International Conference on Theory and Practice of Electronic Governance, pp. 430–441 (2020)
Velasco, L.: Optimizadores en redes neuronales profundas: un enfoque práctico (2020). https://velascoluis.medium.com/optimizadores-en-redes-neuronales-profundas-un-enfoque-práctico-819b39a3eb5
Yaqub, M., et al.: State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci. 10(7), 1–19 (2020)
Yudita, S.I., Mantoro, T., Ayu, M.A.: Deep face recognition for imperfect human face images on social media using the CNN method. In: 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), pp. 412–417. IEEE (2021)
Zatarain Cabada, R., Barrón Estrada, M.L., Cárdenas López, H.M.: Reconocimiento multimodal de emociones orientadas al aprendizaje. Res. Comput. Sci. 148(7), 153–165 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Garduño-Miralrio, JC., Valle-Cruz, D., López-Chau, A., Rojas-Hernández, R. (2022). Convolutional Neural Networks Applied to Emotion Analysis in Texts: Experimentation from the Mexican Context. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-21422-6_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21421-9
Online ISBN: 978-3-031-21422-6
eBook Packages: Computer ScienceComputer Science (R0)