Skip to main content

A Survey on Knowledge Graph-Based Methods for Automated Driving

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1686))

Included in the following conference series:

  • 1228 Accesses

Abstract

Deep learning methods have made remarkable breakthroughs in machine learning in general and in automated driving (AD) in particular. However, there are still unsolved problems to guarantee reliability and safety of automated systems, especially to effectively incorporate all available information and knowledge in the driving task. Knowledge graphs (KG) have recently gained significant attention from both industry and academia for applications that benefit by exploiting structured, dynamic, and relational data. The complexity of graph-structured data with complex relationships and inter-dependencies between objects has posed significant challenges to existing machine learning algorithms. However, recent progress in knowledge graph embeddings and graph neural networks allows to applying machine learning to graph-structured data. Therefore, we motivate and discuss the benefit of KGs applied to AD. Then, we survey, analyze and categorize ontologies and KG-based approaches for AD. We discuss current research challenges and propose promising future research directions for KG-based solutions for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, E., Al-Jarrah, O.Y., et al.: A survey on 3d object detection methods for autonomous driving applications. T-ITS 20(10), 3782–3795 (2019)

    Google Scholar 

  2. ASAM: ASAM OpenSCENARIO V2.0 (2022)

    Google Scholar 

  3. ASAM: ASAM OpenX, proposal (2022)

    Google Scholar 

  4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  5. Badue, C., Guidolini, R., Carneiro, R.V., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)

    Article  Google Scholar 

  6. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813-1820. IEEE (2018)

    Google Scholar 

  7. Bordes, J.B., Davoine, F., Xu, P., Denoeux, T.: Evidential grammars: a compositional approach for scene understanding. application to multimodal street data. Appl. Soft Comput. 61, 1173–1185 (2017)

    Article  Google Scholar 

  8. Buechel, M., Hinz, G., Ruehl, F., et al.: Ontology-based traffic scene modeling, traffic regulations dependent situational awareness and decision-making for automated vehicles. In: IEEE Intelligent Vehicles Symposium, IV (2017)

    Google Scholar 

  9. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine learning in highly automated driving. In: SAFECOMP Workshops (2017)

    Google Scholar 

  10. Cai, H., Zheng, V., Chang, K.: A comprehensive survey of graph embedding: problems, techniques, and applications. In: IEEE TKDE (2018)

    Google Scholar 

  11. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on graphs: a model and comprehensive taxonomy. CoRR abs/2005.03675 (2020)

    Google Scholar 

  12. Chang, X., Ren, P., Xu, P., Li, Chen, X., Hauptmann, A.: Scene graphs: a survey of generations and applications. arXiv abs/2104.01111 (2021)

    Google Scholar 

  13. Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In: Proceedings of the 10th IC3K (2018)

    Google Scholar 

  14. Chowdhury, S.N., Wickramarachchi, R., Gad-Elrab, M.H., Stepanova, D., Henson, C.: Towards leveraging commonsense knowledge for autonomous driving. In: ISWC (2021)

    Google Scholar 

  15. Claussmann, L., Revilloud, M., Glaser, S., Gruyer, D.: A study on al-based approaches for high-level decision making in highway autonomous driving. In: SMC (2017)

    Google Scholar 

  16. Dianov, I., Ramírez-Amaro, K., Cheng, G.: Generating compact models for traffic scenarios to estimate driver behavior using semantic reasoning. In: IROS (2015)

    Google Scholar 

  17. Dickmanns, E., Graefe, V.: Dynamic monocular machine vision. Mach. Vis. Appl. (2005)

    Google Scholar 

  18. Dierkes, F., Raaijmakers, M., Schmidt, M., Bouzouraa, M.E., Hofmann, U., Maurer, M.: Towards a multi-hypothesis road representation for automated driving. In: IEEE ITSC (2015)

    Google Scholar 

  19. Elahi, M.F., Luo, X., Tian, R.: A framework for modeling knowledge graphs via processing natural descriptions of vehicle-pedestrian interactions. In: Stephanidis, C., Duffy, V.G., Streitz, N., Konomi, S., Krömker, H. (eds.) HCII 2020. LNCS, vol. 12429, pp. 40–50. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59987-4_4

    Chapter  Google Scholar 

  20. Fang, F., Yamaguchi, S., Khiat, A.: Ontology-based reasoning approach for long-term behavior prediction of road users. In: IEEE ITSC (2019)

    Google Scholar 

  21. Feld, M., Müller, C.A.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: AutomotiveUI (2011)

    Google Scholar 

  22. Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: ICST AMBI-SYS (2008)

    Google Scholar 

  23. de Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehicles. CoRR abs/2001.11507 (2020)

    Google Scholar 

  24. Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle, M., et al.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. In: IET ITS (2014)

    Google Scholar 

  25. González, D., Pérez, J., Montero, V.M., Nashashibi, F.: A review of motion planning techniques for automated vehicles. In: T-ITS (2016)

    Google Scholar 

  26. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: IJCNN (2005)

    Google Scholar 

  27. Gouidis, F., Vassiliades, A., Patkos, T., et al.: A review on intelligent object perception methods combining knowledge-based reasoning and machine learning. In: Proceedings of the AAAI-MAKE Symposium (2020)

    Google Scholar 

  28. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78–94 (2018)

    Article  Google Scholar 

  29. Grigorescu, S.M., Trasnea, B., Cocias, T.T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020)

    Article  Google Scholar 

  30. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: CVPR (2019)

    Google Scholar 

  31. Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Commun. ACM (2016)

    Google Scholar 

  32. Guo, Z., Huang, Y., Hu, X., Wei, H., Zhao, B.: A survey on deep learning based approaches for scene understanding in autonomous driving. Electronics 10(4), 471 (2021)

    Article  Google Scholar 

  33. Gutiérrez, G., Iglesias, J.A., Ordóñez, F.J., Ledezma, A., Sanchis, A.: Agent-based framework for advanced driver assistance systems in urban environments. In: FUSION (2014)

    Google Scholar 

  34. Halilaj, L., Dindorkar, I., Lüttin, J., Rothermel, S.: A knowledge graph-based approach for situation comprehension in driving scenarios. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 699–716. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_42

    Chapter  Google Scholar 

  35. Halilaj, L., Luettin, J., Henson, C., Monka, S.: Knowledge graphs for automated driving. In: IEEE AIKE-Artificial Intelligence and Knowledge Engineering (2022)

    Google Scholar 

  36. Halilaj, L., Luettin, J., Rothermel, S., Arumugam, S.K., Dindorkar, I.: Towards a knowledge graph-based approach for context-aware points-of-interest recommendations. In: ACM/SIGAPP SAC, pp. 1846–1854 (2021)

    Google Scholar 

  37. Henson, C., Schmid, S., Tran, A.T., Karatzoglou, A.: Using a knowledge graph of scenes to enable search of autonomous driving data. In: ISWC (2019)

    Google Scholar 

  38. Herrmann, M., Witt, C., Lake, L., Guneshka, S., Heinzemann, C., Bonarens, F., et al.: Using ontologies for dataset engineering in automotive AI applications. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2022)

    Google Scholar 

  39. Hina, M.D., Thierry, C., Soukane, A., Ramdane-Cherif, A.: Ontological and machine learning approaches for managing driving context in intelligent transportation. In: IC3K (2017)

    Google Scholar 

  40. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hogan, A., Blomqvist, E., Cochez, M., et al.: Knowledge graphs. In: ACM Computing Surveys (2021)

    Google Scholar 

  42. Homayounfar, N., Liang, J., Ma, W.C., Fan, J., Wu, X., Urtasun, R.: Dagmapper: learning to map by discovering lane topology. In: ICCV (2019)

    Google Scholar 

  43. Hovi, J., Ichise, R.: Feasibility study: rule generation for ontology-based decision-making systems. In: Wang, X., Lisi, F.A., Xiao, G., Botoeva, E. (eds.) JIST 2019. CCIS, vol. 1157, pp. 88–99. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-3412-6_9

    Chapter  Google Scholar 

  44. Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: (ACIRS) (2019)

    Google Scholar 

  45. Huang, Y., Chen, Y.: Survey of state-of-art autonomous driving technologies with deep learning. In: IEEE QRS-C (2020)

    Google Scholar 

  46. Hülsen, M., Zöllner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. IEEE IV Symposium (2011)

    Google Scholar 

  47. Hülsen, M., Zöllner, J.M., Haeberlen, N., Weiss, C.: Asynchronous real-time framework for knowledge-based intersection assistance. In: IEEE ITSC (2011)

    Google Scholar 

  48. ISO: ISO 26262–1:2018: Road vehicles - functional safety (2018)

    Google Scholar 

  49. Janai, J., Güney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found. Trends Comput. Graph. Vis. 12(1–3), 1–308 (2020)

    Article  Google Scholar 

  50. Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefrançois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1–10 (2019)

    Article  Google Scholar 

  51. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition and applications. In: IEEE Transactions on Neural Networks and Learning Systems (2021)

    Google Scholar 

  52. Johnson, J., et al.: Image retrieval using scene graphs. In: CVPR (2015)

    Google Scholar 

  53. Kaleeswaran, A., Nordmann, A., Mehdi, A.: Towards integrating ontologies into verification for autonomous driving. In: ISWC Satellites (2019)

    Google Scholar 

  54. Kannan, S., Thangavelu, A., Kalivaradhan, R.: An intelligent driver assistance system (i-das) for vehicle safety modelling using ontology approach. Int. J. UbiComp 1(3), 15–29 (2010)

    Article  Google Scholar 

  55. Kim, J.E., Henson, C., Huang, K., Tran, T.A., Lin, W.Y.: Accelerating road sign ground truth construction with knowledge graph and machine learning. arXiv abs/2012.02672 (2020)

    Google Scholar 

  56. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  57. Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23, 4909–4926 (2022)

    Article  Google Scholar 

  58. Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: Vsso: the vehicle signal and attribute ontology. In: SSN@ISWC (2018)

    Google Scholar 

  59. Kohlhaas, R., Bittner, T., Schamm, T., Zöllner, J.M.: Semantic state space for high-level maneuver planning in structured traffic scenes. In: ITSC (2014)

    Google Scholar 

  60. Kunze, L., Bruls, T., Suleymanov, T., Newman, P.: Reading between the lanes: road layout reconstruction from partially segmented scenes. In: ITSC (2018)

    Google Scholar 

  61. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  62. Leroy, J., Gruyer, D., Orfila, O., Faouzi, N.E.E.: Five key components based risk indicators ontology for the modelling and identification of critical interaction between human driven and automated vehicles. In: IFAC (2020)

    Google Scholar 

  63. Li, X., Ying, X., Chuah, M.C.: Grip: graph-based interaction-aware trajectory prediction. In: 2019 IEEE ITSC, pp. 3960–3966 (2019)

    Google Scholar 

  64. Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. In: IST (2020)

    Google Scholar 

  65. Lilis, Y., Zidianakis, E., Partarakis, N., Antona, M., Stephanidis, C.: Personalizing HMI elements in ADAS using ontology meta-models and rule based reasoning. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2017. LNCS, vol. 10277, pp. 383–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58706-6_31

    Chapter  Google Scholar 

  66. Liu, H., Singh, P.: Conceptnet - a practical commonsense reasoning tool-kit. BT Technol. J. 22, 211–226 (2004). https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d

    Article  Google Scholar 

  67. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2019). https://doi.org/10.1007/s11263-019-01247-4

    Article  MATH  Google Scholar 

  68. Lu, P., Xu, S., Peng, H.: Graph-embedded lane detection. In: IEEE Transactions on Image Processing (2021)

    Google Scholar 

  69. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. In: IEEE Transactions PAMI (2021)

    Google Scholar 

  70. Mohammad, M.A., Kaloskampis, I., Hicks, Y., Setchi, R.: Ontology-based framework for risk assessment in road scenes using videos. In: International Conference KES (2015)

    Google Scholar 

  71. Monka, S., Halilaj, L., Rettinger, A.: A survey on visual transfer learning using knowledge graphs. Semant. Web 13, 477–510 (2022)

    Article  Google Scholar 

  72. Monka, S., Halilaj, L., Schmid, S., Rettinger, A.: Learning visual models using a knowledge graph as a trainer. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 357–373. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88361-4_21

    Chapter  Google Scholar 

  73. Morignot, P., Nashashibi, F.: An ontology-based approach to relax traffic regulation for autonomous vehicle assistance. arXiv abs/1212.0768 (2012)

    Google Scholar 

  74. Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep learning-based vehicle behaviour prediction for autonomous driving applications: a review. arXiv abs/1912.11676 (2019)

    Google Scholar 

  75. Narote, S.P., Bhujbal, P.N., Narote, A.S., Dhane, D.M.: A review of recent advances in lane detection and departure warning system. Pattern Recognit. 73, 216–234 (2018)

    Article  Google Scholar 

  76. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. In: Proceedings of the IEEE (2016)

    Google Scholar 

  77. Paardekooper, J.P., Comi, M., et al.: A hybrid-ai approach for competence assessment of automated driving functions. In: SafeAI@AAAI (2021)

    Google Scholar 

  78. Paden, B., Cáp, M., Yong, S.Z., Yershov, D.S., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. In: IEEE Transactions on Intelligent Vehicles (2016)

    Google Scholar 

  79. Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: Proceedings of the FUSION (2013)

    Google Scholar 

  80. Qiu, H., Ayara, A., Glimm, B.: A knowledge architecture layer for map data in autonomous vehicles. In: ITSC (2020)

    Google Scholar 

  81. Qiu, H., Ayara, A., Glimm, B.: Ontology-based processing of dynamic maps in automated driving. In: KEOD (2020)

    Google Scholar 

  82. Qiu, H., Ayara, A., Glimm, B.: Ontology-based map data quality assurance. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 73–89. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_5

    Chapter  Google Scholar 

  83. Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: ICAS (2008)

    Google Scholar 

  84. Ryu, M.W., Cha, S.H.: Context-awareness based driving assistance system for autonomous vehicles. Int. J. Control Autom. 1(1), 153–162 (2018)

    Article  Google Scholar 

  85. Sarwar, S., Zia, S., ul Qayyum, Z., Iqbal, M., Safyan, M., Mumtaz, S., et al.: Context aware ontology-based hybrid intelligent framework for vehicle driver categorization. In: Transactions on Emerging Telecommunications Technologies (2019)

    Google Scholar 

  86. Schafer, F., Kriesten, R., Chrenko, D., Gechter, F.: No need to learn from each other? - potentials of knowledge modeling in autonomous vehicle systems engineering towards new methods in multidisciplinary contexts. In: ICE/ITMC (2017)

    Google Scholar 

  87. Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R., Smith, S.: Using ontologies to aid navigation planning in autonomous vehicles. Knowl. Eng. Rev. 18(3), 243–255 (2003)

    Article  Google Scholar 

  88. Scholtes, M., Westhofen, L., Turner, L.R., Lotto, K., Schuldes, M., Weber, H., et al.: 6-layer model for a structured description and categorization of urban traffic and environment. IEEE Access 9, 59131–59147 (2021)

    Article  Google Scholar 

  89. Schwarting, W., Pierson, A., et al.: Social behavior for autonomous vehicles. In: Proceedings of the National Academy of Sciences, USA (2019)

    Google Scholar 

  90. Singhal, A.: Introducing the knowledge graph: things, not strings. https://blog.google/products/search/introducing-knowledge-graph-things-not/ (2012). 07 May 2021

  91. Spehr, J., Rosebrock, D., Mossau, D., Auer, R., Brosig, S., Wahl, F.: Hierarchical scene understanding for intelligent vehicles. In: 2011 IEEE Intelligent Vehicles Symposium (IV) (2011)

    Google Scholar 

  92. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: Principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  MATH  Google Scholar 

  93. Suryawanshi, Y., Qiu, H., Ayara, A., Glimm, B.: An ontological model for map data in automotive systems. In: IEEE AIKE (2019)

    Google Scholar 

  94. Tang, J., Li, S., Liu, P.: A review of lane detection methods based on deep learning. Pattern Recognit. 11, 107623 (2021)

    Article  Google Scholar 

  95. Töpfer, D., Spehr, J., Effertz, J., Stiller, C.: Efficient road scene understanding for intelligent vehicles using compositional hierarchical models. In: T-ITS (2015)

    Google Scholar 

  96. Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: ITSC (2015)

    Google Scholar 

  97. Ulbrich, S., Nothdurft, T., Maurer, M., Hecker, P.: Graph-based context representation, environment modeling and information aggregation for automated driving. In: IEEE Intelligent Vehicles Symposium Proceedings (2014)

    Google Scholar 

  98. Urbieta, I.R., Nieto, M., García, M., Otaegui, O.: Design and implementation of an ontology for semantic labeling and testing: automotive global ontology (AGO). Appli. Sci. 11(17), 7782 (2021)

    Article  Google Scholar 

  99. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR (2018)

    Google Scholar 

  100. Venkateshkumar, S., Sridhar, M., Ott, P.: Latent hierarchical part based models for road scene understanding. In: ICCVW (2015)

    Google Scholar 

  101. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. In: IEEE Transactions on Knowledge and Data Engineering (2017)

    Google Scholar 

  102. Werner, S., Rettinger, A., Halilaj, L., Luettin, J.: Embedding Taxonomical, Situational or Sequential Knowledge Graph Context for Recommendation Tasks. In: Further with Knowledge Graphs (2021)

    Google Scholar 

  103. Werner, S., Rettinger, A., Halilaj, L., Lüttin, J.: RETRA: recurrent transformers for learning temporally contextualized knowledge graph embeddings. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 425–440. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_25

    Chapter  Google Scholar 

  104. Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., Schuldes, M.: Using ontologies for the formalization and recognition of criticality for automated driving. IEEE Open J. Intell. Transp. Syst. 3, 519–538 (2022)

    Article  Google Scholar 

  105. Wickramarachchi, R., Henson, C., Sheth, A.: An evaluation of knowledge graph embeddings for autonomous driving data: experience and practice. In: AAAI-MAKE (2020)

    Google Scholar 

  106. Wickramarachchi, R., Henson, C., Sheth, A.: Knowledge-infused learning for entity prediction in driving scenes. Frontiers in Big Data (2021)

    Google Scholar 

  107. Woo, S., Kim, D., Cho, D., Kweon, I.S.: Linknet: relational embedding for scene graph. In: NeurIPS (2018)

    Google Scholar 

  108. Xiong, Z., Dixit, V., Waller, S.: The development of an ontology for driving context modelling and reasoning. In: ITSC (2016)

    Google Scholar 

  109. Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_36

    Chapter  Google Scholar 

  110. Zhao, L., Ichise, R., et al., T.Y.: Ontology-based decision making on uncontrolled intersections and narrow roads. In: 2015 IEEE Intelligent Vehicles Symposium (IV) (2015)

    Google Scholar 

  111. Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: a feasibility study at uncontrolled intersections. In: IEICE (2017)

    Google Scholar 

  112. Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: ISWC (2015)

    Google Scholar 

  113. Zhu, H., Yuen, K., Mihaylova, L., Leung, H.: Overview of environment perception for intelligent vehicles. In: T-ITS (2017)

    Google Scholar 

  114. Zipfl, M., et al.: Relation-based motion prediction using traffic scene graphs. In: IEEE ITSC (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Luettin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luettin, J., Monka, S., Henson, C., Halilaj, L. (2022). A Survey on Knowledge Graph-Based Methods for Automated Driving. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21422-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21421-9

  • Online ISBN: 978-3-031-21422-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics