Abstract
Ontology and Knowledge Graph (KG) are two hotspot topics in Semantic Web and Artificial Intelligence (AI) fields. They have gained their importance due to the thriving development of the Internet in this century coupled with the explosive growth of data, which leads to increased demand for ontologies or KG to promote the Semantic Web and AI applications. Many researchers conflate ontology with KG, especially when even Wikipedia refers to both terms as synonymous; however, the difference is obvious. In this paper, we will highlight the differences between ontology and KG. Also, we have provided a redefinition for the ontology tuple and explained how the ontology is a foundation layer for KG.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Ontology Web Language.
- 2.
Resource Description Framework.
- 3.
Resource Description Framework Schema.
- 4.
- 5.
- 6.
References
Ahmed, I.A., et al.: Arabic knowledge graph construction: a close look in the present and into the future. J. King Saud Univ. Comput. Inf. Sci. (2022). iSSN: 1319–1578. https://doi.org/10.1016/j.jksuci.2022.04.007
Albukhitan, S., Helmy, T., Alnazer, A.: Arabic ontology learning using deep learning. In: Proceedings of the International Conference on Web Intelligence, 3109052, pp. 1138–1142. ACM (2007). https://doi.org/10.1145/3106426.3109052
Arefyev, N., et al.: Neural GRANNy at SemEval-2019 task 2: a combined approach for better modeling of semantic relationships in semantic frame induction. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 31–38 (2019)
Astrakhantsev, N A., Yu Turdakov, D.: Automatic construction and enrichment of informal ontologies: a survey. Program. Comput. Softw. 39(1), 34–42 (2013). issn: 1608–3261. https://doi.org/10.1134/S0361768813010039
Al-Aswadi, F.N., Chan, H.Y., Gan, K.H.: Automatic ontology construction from text: a review from shallow to deep learning trend. Artif. Intell. Rev. 53(6), 3901–3928 (2019). https://doi.org/10.1007/s10462-019-09782-9
AL-Aswadi, F.N., Chan, H.Y., Gan, K.H.: Extracting semantic concepts and relations from scientific publications by using deep learning. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds.) IRICT 2020. LNDECT, vol. 72, pp. 374–383. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70713-2_35
Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: an overview. Ontology Learn. Methods Eval. Appl. 123, 3–12 (2005)
Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). https://doi.org/10.1007/11428817_21
De Donato, R., et al.: QueDI: from knowledge graph querying to data visualization. In: SEMANTiCS, pp. 70–86 (2020)
Du, Y., et al.: Knowledge extract and ontology construction method of assembly process text. In: MATEC Web of Conferences, vol. 355. EDP Sciences (2022). ISBN: 2274-7214
Ehrlinger, L., Wöß, W.: Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48(1-4), 2 (2016)
Färber, M., et al.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Seman. Web 9(1), 77–129 (2018). issn: 1570–0844
Ferré, S.,. Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Seman. Web 8(3), 405–418 (2017). issn: 1570–0844
Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199–220 (1993). issn: 1042–8143
Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0
Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76–83 (2021). ISSN: 0001–0782. https://doi.org/10.1145/3397512
Ji, S., et al.: A survey on knowledge graphs: representation, acquisition and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2) 494–514 (2022). https://doi.org/10.1109/TNNLS.2021.3070843
Jiang, X., Tan, A.H.: CRCTOL: a semantic-based domain ontology learning system. J. Am. Soc. Inf. Sci. Technol. 61(1), 150–168 (2010). ISSN: 1532–2890
Kasenchak, B., Lehnert, A.E.: ontology for knowledge graphs. Online Webinar (2021). https://www.youtube.com/watch?v=7qIBex7a0kE
Kondylakis, H., et al. Delta: a modular ontology evaluation system. Information 12(8), 301 (2021). ISSN: 2078–2489
Lan, N., et al.: Research on knowledge graphs with concept lattice constraints. Symmetry 13(12), 2363 (2021). ISSN: 2073–8994
Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167–195 (2015). ISSN 1570–0844
Liu, Z., Han, X.: Deep learning in knowledge graph. In: Deng, L., Liu, Y. (eds.) Deep Learning in Natural Language Processing, pp. 117–145. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5209-5_5
Browarnik, A., Maimon, O.: Ontology learning from text: why the ontology learning layer cake is not viable. Int. J. Signs Semiot. Syst. 4(2) 1–14 (2015). ISSN: 2155–5028. https://doi.org/10.4018/ijsss.2015070101
Nickel, M., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016). ISSN: 1558–2256. https://doi.org/10.1109/JPROC.2015.2483592
Sören, A., et al.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. Association for Computing Machinery, p. 3227689. https://doi.org/10.1145/3227609
Subhashini, R., Akilandeswari, J.: A survey on ontology construction methodologies. Int. J. Enterp. Comput. Bus. Syst. 11, 60–72 (2011)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web, 1242667, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.1242667
Tiwari, S., Al-Aswadi, F.N., Gaurav, D.: Recent trends in knowledge graphs: theory and practice. Soft Comput. 25(13), 8337–8355 (2021). https://doi.org/10.1007/s00500-021-05756-8
Tiwari, S., Gaurav, D., Srivastava, A., Rai, C., Abhishek, K.: A preliminary study of knowledge graphs and their construction. In: Tavares, J.M.R.S., Chakrabarti, S., Bhattacharya, A., Ghatak, S. (eds.) Emerging Technologies in Data Mining and Information Security. LNNS, vol. 164, pp. 11–20. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9774-9_2
Völker, J., Fernandez Langa, S., Sure, Y.: Supporting the construction of Spanish legal ontologies with Text2Onto. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 105–112. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85569-9_7
Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the future. ACM Comput. Surv. (CSUR) 44(4), 20 (2012). ISSN: 0360–0300
Alavijeh, Z.Z.: The application of link mining in social network analysis. In: 2015. p. 6 (2015), ISSN: 2322–5157
Zou, X.: A survey on application of knowledge graph. J. Phys. Conf. Ser. 1487, 012016 (2020). ISSN: 1742–6588 1742–6596. https://doi.org/10.1088/1742-6596/1487/1/012016
Zouaq, A.: An overview of shallow and deep natural language processing for ontology learning. In: Wong, W., Liu, W., Bennamoun, M. (eds.) Ontology Learning and Knowledge Discovery using the Web: Challenges and Recent Advances, vol. 2. USA, Information Science Reference (IGI Global), Chap. 2, pp. 16–37 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
AL-Aswadi, F.N., Chan, H.Y., Gan, K.H. (2022). From Ontology to Knowledge Graph Trend: Ontology as Foundation Layer for Knowledge Graph. In: Villazón-Terrazas, B., Ortiz-Rodriguez, F., Tiwari, S., Sicilia, MA., Martín-Moncunill, D. (eds) Knowledge Graphs and Semantic Web . KGSWC 2022. Communications in Computer and Information Science, vol 1686. Springer, Cham. https://doi.org/10.1007/978-3-031-21422-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-21422-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21421-9
Online ISBN: 978-3-031-21422-6
eBook Packages: Computer ScienceComputer Science (R0)