Skip to main content

On Predicting the Work Load for Service Contractors

  • Conference paper
  • First Online:
Artificial Intelligence XXXIX (SGAI-AI 2022)

Abstract

Service Industries rely on resource planning and service optimisation to improve operational efficiency. Forecasting the demand for the service with high accuracy plays a significant role in proactively planning the resources to support the expected demand. With the evolution of the Internet Of Things (IoT), the service contractors use different types of devices connected to the internet to capture the demand and monitor the historical pattern. In this work, we analyse the arrival pattern tracked using different IoT devices of personnel employed by a contractor at different zones for providing service. This arrival pattern at a specific zone is considered the service demand. We document this analysis and forecast the future arrival pattern of personnel at different zones. We compare different regression models based on their accuracy to select the best fit model and report the results. The best fit model is used for forecasting the arrival pattern by a real-life application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ainslie, R., McCall, J., Shakya, S., Owusu, G.: Predictive planning with neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2110–2117. IEEE (2016)

    Google Scholar 

  2. Al-Amleh, K.: A study into the adoption of internet of things-IoT technologies within contractors in Dubai, United Arab Emirates, Ph. D. thesis, The British University in Dubai (BUiD) (2020)

    Google Scholar 

  3. Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress, Berkeley, CA (2015). https://doi.org/10.1007/978-1-4302-5990-9_4

    Chapter  Google Scholar 

  4. Bai, J., Ng, S.: Forecasting economic time series using targeted predictors. J. Econometr. 146(2), 304–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balwani, S.S.V.: Operational efficiency through resource planning optimization and work process improvement, Ph. D. thesis, Massachusetts Institute of Technology (2012)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  7. Ekici, B.B., Aksoy, U.T.: Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 40(5), 356–362 (2009)

    Article  MATH  Google Scholar 

  8. El Mrabet, Z., Sugunaraj, N., Ranganathan, P., Abhyankar, S.: Random forest regressor-based approach for detecting fault location and duration in power systems. Sensors 22(2), 458 (2022)

    Article  Google Scholar 

  9. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Graw, J., Wood, W., Phrampus, B.: Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. Solid Earth 126(1), e2020JB020135 (2021)

    Google Scholar 

  11. Gupta, A., et al.: Solar energy prediction using decision tree regressor. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 489–495. IEEE (2021)

    Google Scholar 

  12. Gupta, B.B., Quamara, M.: An overview of internet of things (iot): architectural aspects, challenges, and protocols. Concurrency Comput. Pract. Exp. 32(21), e4946 (2020)

    Article  Google Scholar 

  13. Huang, J., Perry, M.: A semi-empirical approach using gradient boosting and k-nearest neighbors regression for gefcom2014 probabilistic solar power forecasting. Int. J. Forecast. 32(3), 1081–1086 (2016)

    Article  Google Scholar 

  14. Johansson, M., Erlandsson, E., Kronholm, T., Lindroos, O.: Key drivers and obstacles for performance among forest harvesting service contractors-a qualitative case study from sweden. Scand. J. For. Res. 36(7–8), 598–613 (2021)

    Article  Google Scholar 

  15. Joshi, N., Singh, G., Kumar, S., Jain, R., Nagrath, P.: Airline prices analysis and prediction using decision tree regressor. In: Batra, U., Roy, N.R., Panda, B. (eds.) REDSET 2019. CCIS, vol. 1229, pp. 170–186. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5827-6_15

    Chapter  Google Scholar 

  16. Kaastra, I., Boyd, M.S.: Forecasting futures trading volume using neural networks. J. Futures Markets (1986–1998) 15(18), 953 (1995)

    Google Scholar 

  17. Keprate, A., Ratnayake, R.C.: Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small bore piping. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1331–1336. IEEE (2017)

    Google Scholar 

  18. Khargharia, H.S., Shakya, S., Ainslie, R., AlShizawi, S., Owusu, G.: Predicting demand in iot enabled service stations. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), pp. 81–87. IEEE (2019)

    Google Scholar 

  19. Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G.: Evolving prediction models with genetic algorithm to forecast vehicle volume in a service station (best application paper). In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 167–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_14

    Chapter  Google Scholar 

  20. Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G.: Evolving large scale prediction models for vehicle volume forecasting in service stations. In: Bramer, M., Ellis, R. (eds.) SGAI-AI 2021. LNCS (LNAI), vol. 13101, pp. 224–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91100-3_19

    Chapter  Google Scholar 

  21. Lawrence, R.: Using neural networks to forecast stock market prices. Univ. Manitoba 333, 2006–2013 (1997)

    Google Scholar 

  22. Liu, Y., Hassan, K.A., Karlsson, M., Pang, Z., Gong, S.: A data-centric internet of things framework based on azure cloud. IEEE Access 7, 53839–53858 (2019)

    Article  Google Scholar 

  23. Madanhire, I., Mbohwa, C.: Enterprise resource planning (erp) in improving operational efficiency: case study. Procedia CIRP 40, 225–229 (2016)

    Article  Google Scholar 

  24. Maltamo, M., Kangas, A.: Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can. J. For. Res. 28(8), 1107–1115 (1998)

    Article  Google Scholar 

  25. Mitchell, T.: Machine learning (1997)

    Google Scholar 

  26. Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemometr. J. Chemometr. Soc. 18(6), 275–285 (2004)

    Article  Google Scholar 

  27. Nava, N., Di Matteo, T., Aste, T.: Financial time series forecasting using empirical mode decomposition and support vector regression. Risks 6(1), 7 (2018)

    Article  Google Scholar 

  28. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  29. Plakandaras, V., Gupta, R., Gogas, P., Papadimitriou, T.: Forecasting the us real house price index. Econ. Model. 45, 259–267 (2015)

    Article  Google Scholar 

  30. Ray, P.P.: A survey on internet of things architectures. J. King Saud Univ.-Comput. Inf. Sci. 30(3), 291–319 (2018)

    Google Scholar 

  31. Riedmiller, M., Braun, H.: RPROP-a fast adaptive learning algorithm. In: proceedings of ISCIS VII (1992)

    Google Scholar 

  32. saedsayad: decision tree - regression. https://www.saedsayad.com/decision_tree_reg.htm

  33. Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)

    Article  Google Scholar 

  34. Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)

    Article  Google Scholar 

  35. Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approx. 26(2), 289–315 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc. Ser. B (statis. Methodol.) 67(2), 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Sikhar Khargharia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khargharia, H.S., Shakya, S., Sharif, S., Ainslie, R., Owusu, G. (2022). On Predicting the Work Load for Service Contractors. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XXXIX. SGAI-AI 2022. Lecture Notes in Computer Science(), vol 13652. Springer, Cham. https://doi.org/10.1007/978-3-031-21441-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21441-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21440-0

  • Online ISBN: 978-3-031-21441-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics