Abstract
Service Industries rely on resource planning and service optimisation to improve operational efficiency. Forecasting the demand for the service with high accuracy plays a significant role in proactively planning the resources to support the expected demand. With the evolution of the Internet Of Things (IoT), the service contractors use different types of devices connected to the internet to capture the demand and monitor the historical pattern. In this work, we analyse the arrival pattern tracked using different IoT devices of personnel employed by a contractor at different zones for providing service. This arrival pattern at a specific zone is considered the service demand. We document this analysis and forecast the future arrival pattern of personnel at different zones. We compare different regression models based on their accuracy to select the best fit model and report the results. The best fit model is used for forecasting the arrival pattern by a real-life application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ainslie, R., McCall, J., Shakya, S., Owusu, G.: Predictive planning with neural networks. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 2110–2117. IEEE (2016)
Al-Amleh, K.: A study into the adoption of internet of things-IoT technologies within contractors in Dubai, United Arab Emirates, Ph. D. thesis, The British University in Dubai (BUiD) (2020)
Awad, M., Khanna, R.: Support vector regression. In: Efficient Learning Machines, pp. 67–80. Apress, Berkeley, CA (2015). https://doi.org/10.1007/978-1-4302-5990-9_4
Bai, J., Ng, S.: Forecasting economic time series using targeted predictors. J. Econometr. 146(2), 304–317 (2008)
Balwani, S.S.V.: Operational efficiency through resource planning optimization and work process improvement, Ph. D. thesis, Massachusetts Institute of Technology (2012)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Ekici, B.B., Aksoy, U.T.: Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 40(5), 356–362 (2009)
El Mrabet, Z., Sugunaraj, N., Ranganathan, P., Abhyankar, S.: Random forest regressor-based approach for detecting fault location and duration in power systems. Sensors 22(2), 458 (2022)
Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)
Graw, J., Wood, W., Phrampus, B.: Predicting global marine sediment density using the random forest regressor machine learning algorithm. J. Geophys. Res. Solid Earth 126(1), e2020JB020135 (2021)
Gupta, A., et al.: Solar energy prediction using decision tree regressor. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 489–495. IEEE (2021)
Gupta, B.B., Quamara, M.: An overview of internet of things (iot): architectural aspects, challenges, and protocols. Concurrency Comput. Pract. Exp. 32(21), e4946 (2020)
Huang, J., Perry, M.: A semi-empirical approach using gradient boosting and k-nearest neighbors regression for gefcom2014 probabilistic solar power forecasting. Int. J. Forecast. 32(3), 1081–1086 (2016)
Johansson, M., Erlandsson, E., Kronholm, T., Lindroos, O.: Key drivers and obstacles for performance among forest harvesting service contractors-a qualitative case study from sweden. Scand. J. For. Res. 36(7–8), 598–613 (2021)
Joshi, N., Singh, G., Kumar, S., Jain, R., Nagrath, P.: Airline prices analysis and prediction using decision tree regressor. In: Batra, U., Roy, N.R., Panda, B. (eds.) REDSET 2019. CCIS, vol. 1229, pp. 170–186. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-5827-6_15
Kaastra, I., Boyd, M.S.: Forecasting futures trading volume using neural networks. J. Futures Markets (1986–1998) 15(18), 953 (1995)
Keprate, A., Ratnayake, R.C.: Using gradient boosting regressor to predict stress intensity factor of a crack propagating in small bore piping. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 1331–1336. IEEE (2017)
Khargharia, H.S., Shakya, S., Ainslie, R., AlShizawi, S., Owusu, G.: Predicting demand in iot enabled service stations. In: 2019 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), pp. 81–87. IEEE (2019)
Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G.: Evolving prediction models with genetic algorithm to forecast vehicle volume in a service station (best application paper). In: Bramer, M., Petridis, M. (eds.) SGAI 2019. LNCS (LNAI), vol. 11927, pp. 167–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34885-4_14
Khargharia, H.S., Shakya, S., Ainslie, R., Owusu, G.: Evolving large scale prediction models for vehicle volume forecasting in service stations. In: Bramer, M., Ellis, R. (eds.) SGAI-AI 2021. LNCS (LNAI), vol. 13101, pp. 224–238. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91100-3_19
Lawrence, R.: Using neural networks to forecast stock market prices. Univ. Manitoba 333, 2006–2013 (1997)
Liu, Y., Hassan, K.A., Karlsson, M., Pang, Z., Gong, S.: A data-centric internet of things framework based on azure cloud. IEEE Access 7, 53839–53858 (2019)
Madanhire, I., Mbohwa, C.: Enterprise resource planning (erp) in improving operational efficiency: case study. Procedia CIRP 40, 225–229 (2016)
Maltamo, M., Kangas, A.: Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution. Can. J. For. Res. 28(8), 1107–1115 (1998)
Mitchell, T.: Machine learning (1997)
Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemometr. J. Chemometr. Soc. 18(6), 275–285 (2004)
Nava, N., Di Matteo, T., Aste, T.: Financial time series forecasting using empirical mode decomposition and support vector regression. Risks 6(1), 7 (2018)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Plakandaras, V., Gupta, R., Gogas, P., Papadimitriou, T.: Forecasting the us real house price index. Econ. Model. 45, 259–267 (2015)
Ray, P.P.: A survey on internet of things architectures. J. King Saud Univ.-Comput. Inf. Sci. 30(3), 291–319 (2018)
Riedmiller, M., Braun, H.: RPROP-a fast adaptive learning algorithm. In: proceedings of ISCIS VII (1992)
saedsayad: decision tree - regression. https://www.saedsayad.com/decision_tree_reg.htm
Song, Y., Liang, J., Lu, J., Zhao, X.: An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing 251, 26–34 (2017)
Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5(4), 276–281 (2004)
Yao, Y., Rosasco, L., Caponnetto, A.: On early stopping in gradient descent learning. Constr. Approx. 26(2), 289–315 (2007)
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Royal Stat. Soc. Ser. B (statis. Methodol.) 67(2), 301–320 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Khargharia, H.S., Shakya, S., Sharif, S., Ainslie, R., Owusu, G. (2022). On Predicting the Work Load for Service Contractors. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XXXIX. SGAI-AI 2022. Lecture Notes in Computer Science(), vol 13652. Springer, Cham. https://doi.org/10.1007/978-3-031-21441-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-21441-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21440-0
Online ISBN: 978-3-031-21441-7
eBook Packages: Computer ScienceComputer Science (R0)