Skip to main content

Investigation of Traps in AlGaN/GaN HEMT Epitaxial Structure Using Conductance Method

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2022)

Abstract

In this article, an investigation has been carried out to determine the trap density and trap energy level using parallel conductance method for AlGaN/GaN HEMT epitaxial structure. Capacitance-Voltage (C–V) and Conductance-Voltage (G–V) measurements with frequency (1 kHz – 10 MHz) and temperature (25 and 250 °C) variations have been performed on large area Schottky pad having area 150 µm2 × 150 µm2. Two different types of traps have been observed with different time constants and densities. In the low frequency range between 1 and 10 kHz slow traps with density (2.79 × 1012–1.79 × 1013 cm−2) and time constant (~0.159 ms) at an energy level of 0.39 eV from EC have been observed whereas in the high frequency range greater than 1 MHz a continuum of ultra-fast traps has been observed with density between 1.94 × 1012 and 6.25 × 1012 cm−2 with time constant of 19.9 ns at 0.18 eV from EC is observed. It is also identified that at high temperature the time constant and trap density for ultra-fast traps has reduced whereas the density of slow traps has a significant increment with similar time constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mishra, U.K., Shen L., Kazior, T.E., Wu, Y.-F.: GaN-based RF power devices and amplifiers. Proc. IEEE. 96(2), 287–305 (February 2008). https://doi.org/10.1109/JPROC.2007.911060

  2. Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistor and MMICs. IEEE Trans. Microw. Theory Tech. 60(6), 1764–1783 (2012). https://doi.org/10.1109/TMTT.2012.2187535

    Article  Google Scholar 

  3. Ambacher, O., et al.: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in n- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999). https://doi.org/10.1063/1.369664

    Article  Google Scholar 

  4. Ibbetson, J.P., Fini, P.T., Ness, K.D., Den Baars, S.P., Speck, J.S., Mishra, U.K.: Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 77(2), 250–252 (2000). https://doi.org/10.1063/1.126940

    Article  Google Scholar 

  5. Su, M., Chen, C., Rajan, S.: Prospects for the application of GaN power devices in hybrid electric vehicle drive systems. Semicond. Sci. Technol. 28, 074012 (2013). https://doi.org/10.1088/0268-1242/28/7/074012

    Article  Google Scholar 

  6. Sharma, C., Visvkarma, A.K., Laishram, R., Malik, A., Narang, K., Vinayak, S., Singh, R.: Cumulative dose γ-irradiation effects on material properties of AlGaN/GaN hetero-structures and electrical properties of HEMT devices. Semicond. Sci. Technol. 34, 065024 (2019). Author, F., Author, S.: Title of a proceedings paper. In: Editor, F., Editor, S. (eds.) Conference 2016, LNCS, vol. 9999, pp. 1–13. Springer, Heidelberg (2016)

    Google Scholar 

  7. Raja, P.V., Nallatamby, J.-C, DasGupta, N., DasGupta, A.: Trapping effects on AlGaN/GaN HEMT characteristics. Solid State Electron. 176, art. no. 107929, 1–15 (February 2021). https://doi.org/10.1016/j.sse.2020.107929

  8. Gassoumi, M.: Characterization of deep levels in AlGaN/GaN HEMT by FT-DLTS and current DLTS. Semiconductors 54, 1296–1303 (2020). https://doi.org/10.1134/S1063782620100127

    Article  Google Scholar 

  9. Visvkarma, A.K., Sehra, K., Chanchal, Laishram, R., Malik, A., Sharma, S., Kumar, S., Rawal, D.S., Vinayak, S., Saxena, M.: Impact of gamma radiation on static, pulsed I-V and RF performance parameters of AlGaN/GaN HEMT. IEEE Transac. Electron Device. 69(5), 2299–2306 (2022). https://doi.org/10.1109/TED.2022.3161402

  10. Simons, A.J., Tayarani-Najaran, M.H., Thomas, C.B.: Conductance technique measurements of the density of interface ststes between ZnS:Mn and p-silicon. J. Appl. Phys. 70(9) (1991). https://doi.org/10.1063/1.349042

  11. Zhu, J., Ma, X., Hou, B., Chen, W., Hao, Y.: Investigation of trap states in high Al content AlGaN/GaN high electron. AIP Adv. 4(037108) (2014). https://doi.org/10.1063/1.4869020

  12. Amir, W., Shin, J., Shin, K., Kin, J., Cho, C., Park, K., Tsutsumi, T., Sugiyama, H., Matsuzaki, H., Kim, T.: A qualitative approach for trap analysis between Al0.25Ga0.75N and GaN in high electron mobility transistors. Sci. Rep. 11 (2021). https://doi.org/10.1038/s41598-021-0176-4

  13. Keller, S., Parish, G., Fini, P.T., Heikman, S., Chen, C.H., Zhang, N., DenBaars, S.P., Mishra, U.K., Wu, Y.F.: Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures. J. Appl. Phys. 86, 5850–5857 (1999). https://doi.org/10.1063/1.371602

  14. Khan, R., et al.: Effect of fully strained AlN nucleation layer on the AlN/SiC interface and subsequent GaN growth on 4H-SiC by MOVPE. J. Mater. Sci. Electron. 30, 18910–18918 (2019). https://doi.org/10.1007/s10854-019

    Article  Google Scholar 

  15. Osvald, J.: Interface traps contribution to capacitance of Al2O3/(GaN)AlGaN/GaN heterostructures at low frequencies. Phys. E. 93, 238–242 (2017). https://doi.org/10.1016/j.physe.2017.06.022

    Article  Google Scholar 

  16. Whiteside, M., Arulkumaran, S., Dikme, Y., Sandupatla, A., Ng, G.I.: Improved interfaced state density by low temperature epitaxy grown AlN for AlGaN/GaN metal-insulator –semiconductor diodes. Mater. Sci. Eng. B 267, 114707 (2020). https://doi.org/10.1016/j.mseb.2020.114707

    Article  Google Scholar 

Download references

Acknowledgment

Authors are thankful to the GaN MMIC team, Solid State Physics Laboratory, DRDO, New Delhi, India for providing the opportunity to carry out this work, and the Indian Institute of Technology, New Delhi, India for their experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanchal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chanchal et al. (2022). Investigation of Traps in AlGaN/GaN HEMT Epitaxial Structure Using Conductance Method. In: Shah, A.P., Dasgupta, S., Darji, A., Tudu, J. (eds) VLSI Design and Test. VDAT 2022. Communications in Computer and Information Science, vol 1687. Springer, Cham. https://doi.org/10.1007/978-3-031-21514-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21514-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21513-1

  • Online ISBN: 978-3-031-21514-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics