Abstract
Preventive maintenance (PM) of manufacturing units aims at maintaining the operable condition of the production line while optimizing the maintenance timing and the loss of productivity during maintenance operations. The lesser studied type of preventive maintenance understands a production line as a single machine with multiple components of different maintenance needs. This is relevant when rotating machinery is deployed, e.g., in the paper and steel industries, in the mass production of raw materials consumed by other businesses. A failure in any stage of the production line has the potential of making the entire machine inoperable and enforcing a shutdown and corrective maintenance costs. This work gives an abstract formalization of PM scheduling for multi-component machines as an optimization problem. To provide a lower bound for the complexity of the optimization problem, we prove that the underlying decision problem is NP-complete for varying-size multi-component machines and scheduling timelines. Besides the formalization, the second main contribution of the paper is due to the practical need to solve the problem in industrial applications: the work gives the first encoding of the PM scheduling problem using Answer Set Optimization (ASO). Some preliminary experiments are conducted and reported to set the scene for further algorithm development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ali, M.B., Sassi, M., Gossa, M., Harrath, Y.: Simultaneous scheduling of production and maintenance tasks in the job shop. Int. J. Prod. Res. 49, 3891–3918 (2011). https://doi.org/10.1080/00207543.2010.492405
Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR 2015, pp. 40–54 (2015). https://doi.org/10.1007/978-3-319-23264-5_5
Banbara, M., et al.: Teaspoon: solving the curriculum-based course timetabling problems with answer set programming. Ann. Oper. Res. 275, 3–37 (2019). https://doi.org/10.1007/s10479-018-2757-7
Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195
Cabalar, P., Kaminski, R., Morkisch, P., Schaub, T.: Telingo = ASP + time. In: LPNMR 2019, pp. 256–269 (2019). https://doi.org/10.1007/978-3-030-20528-7_19
Cassady, C., Murdock, P., Pohl, E.: Selective maintenance for support equipment involving multiple maintenance actions. EJOR 129(2), 252–258 (2001), a Global View of Industrial Logistics. https://doi.org/10.1016/S0377-2217(00)00222-8
Chansombat, S., Pongcharoen, P., Hicks, C.: A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry. Int. J. Prod. Res. 57(1), 61–82 (2019). https://doi.org/10.1080/00207543.2018.1459923
Chen, X., An, Y., Zhang, Z., Li, Y.: An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals. J. Manuf. Syst. 54, 227–241 (2020). https://doi.org/10.1016/j.jmsy.2019.12.004
Do, P., Vu, H.C., Barros, A., Bérenguer, C.: Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams. Reliab. Eng. & Syst. Safety 142, 56–67 (2015). https://doi.org/10.1016/j.ress.2015.04.022
Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp. 301–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5_27
Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P., Stepanova, D.: Answer-set programming for lexicographical makespan optimisation in parallel machine scheduling. In: KR 2021, pp. 280–290 (2021). http://dx.doi.org/10.24963/kr.2021/27
Frost, D., Dechter, R.: Optimizing with constraints: a case study in scheduling maintenance of electric power units. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 469–469. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2_40
Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory of NP-Completeness. W. H. Freeman & Company (1979)
Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., Schaub, T.: Progress in clasp series 3. In: LPNMR 2015, pp. 368–383 (2015). https://doi.org/10.1007/978-3-319-23264-5_31
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theor. Pract. Log. Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054
Gebser, M., Kaminski, R., Ostrowski, M., Schaub, T., Thiele, S.: On the input language of ASP grounder Gringo. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 502–508. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_49
Geurtsen, M., Didden, J.B., Adan, J., Atan, Z., Adan, I.: Production, maintenance and resource scheduling: a review. EJOR (2022). https://doi.org/10.1016/j.ejor.2022.03.045
Hoai, M.T., Luong, H.T.: Selective maintenance policy with time-window constraint. In: Proceedings of the 7th Asia Pacific Industrial Engineering and Management Systems Conference 2006. Bangkok, Thailand (2006)
Nguyen, K.A., Do, P., Grall, A.: Condition-based maintenance for multi-component systems using importance measure and predictive information. Int. J. Syst. Sci.: Oper. Logist. 1(4), 228–245 (2014). https://doi.org/10.1080/23302674.2014.983582
Nguyen, K.A., Do, P., Grall, A.: Multi-level predictive maintenance for multi-component systems. Reliab. Eng. Syst. Safety 144, 83–94 (2015). https://doi.org/10.1016/j.ress.2015.07.017
Olde Keizer, M., Flapper, S., Teunter, R.: Condition-based maintenance policies for systems with multiple dependent components: a review. EJOR 261(2), 405–420 (2017). https://doi.org/10.1016/j.ejor.2017.02.044
Rajaprasad, S.V.S.: Investigation of reliability, maintainability and availability of a paper machine in an integrated pulp and paper mill. Int. J. Eng. Sci. Technol. 10(3), 43–56 (2018). https://doi.org/10.4314/ijest.v10i3.5
Sachdeva, A., Kumar, D., Kumar, P.: Planning and optimizing the maintenance of paper production systems in a paper plant. Comput. Industr. Eng. 55, 817–829 (2008). https://doi.org/10.1016/j.cie.2008.03.004
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artif. Intell. 138(1–2), 181–234 (2002). https://doi.org/10.1016/S0004-3702(02)00187-X
Ullman, J.: NP-complete scheduling problems. JCSS 10(3), 384–393 (1975). https://doi.org/10.1016/S0022-0000(75)80008-0
You, M.Y., Meng, G.: A modularized framework for predictive maintenance scheduling. Proc. Instit. Mech. Eng. Part O: J. Risk Reliab. 226(4), 380–391 (2012). https://doi.org/10.1177/1748006X11431209
Youssef, H., Brigitte, C.M., Noureddine, Z.: Lower bounds and multiobjective evolutionary optimisation for combined maintenance and production scheduling in job shop. In: IEEE 2003 Conference on EFTA, vol. 2, pp. 95–100 (2003). https://doi.org/10.1109/ETFA.2003.1248675
Zheng, Y., Lian, L., Mesghouni, K.: Comparative study of heuristics algorithms in solving flexible job shop scheduling problem with condition based maintenance. J. Industr. Eng. Manag. 7(2), 518–531 (2014). http://dx.doi.org/10.3926/jiem.1038
Zurn, H., Quintana, V.: Generator maintenance scheduling via successive approximations dynamic programming. IEEE Trans. Power Apparat. Syst. 94(2), 665–671 (1975). https://doi.org/10.1109/T-PAS.1975.31894
Öhman, M., Hiltunen, M., Virtanen, K., Holmström, J.: Frontlog scheduling in aircraft line maintenance: from explorative solution design to theoretical insight into buffer management. J. Oper. Manag. 67(2), 120–151 (2021). https://doi.org/10.1002/joom.1108
Acknowledgment
The support from the Academy of Finland within the project AI-ROT (#335718) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yli-Jyrä, A., Janhunen, T. (2022). Applying Answer Set Optimization to Preventive Maintenance Scheduling for Rotating Machinery. In: Governatori, G., Turhan, AY. (eds) Rules and Reasoning. RuleML+RR 2022. Lecture Notes in Computer Science, vol 13752. Springer, Cham. https://doi.org/10.1007/978-3-031-21541-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-21541-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21540-7
Online ISBN: 978-3-031-21541-4
eBook Packages: Computer ScienceComputer Science (R0)