Skip to main content

A Rule-Based Behaviour Planner for Autonomous Driving

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2022)

Abstract

Autonomous vehicles require highly sophisticated decision-making to determine their motion. This paper describes how such functionality can be achieved with a practical rule engine learned from expert driving decisions. We propose an algorithm to create and maintain a rule-based behaviour planner, using a two-layer rule-based theory. The first layer determines a set of feasible parametrized behaviours, given the perceived state of the environment. From these, a resolution function chooses the most conservative high-level maneuver. The second layer then reconciles the parameters into a single behaviour. To demonstrate the practicality of our approach, we report results of its implementation in a level-3 autonomous vehicle and its field test in an urban environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://V8.dev.

References

  1. Aksjonov, A., Kyrki, V.: Rule-based decision-making system for autonomous vehicles at intersections with mixed traffic environment. In: International Intelligent Transportation Systems Conference (ITSC), pp. 660–666. IEEE (2021)

    Google Scholar 

  2. Bansal, M., Krizhevsky, A., Ogale, A.S.: ChauffeurNet: learning to drive by imitating the best and synthesizing the worst. In: Robotics: Science and Systems XV. RSS Foundation (2019)

    Google Scholar 

  3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al.: End to end learning for self-driving cars. arXiv: 1604.07316 (2016)

  4. Fu, Y., Li, C., Yu, F.R., Luan, T.H., Zhang, Y.: Hybrid autonomous driving guidance strategy combining deep reinforcement learning and expert system. Trans. Intell. Transp. Syst. (T-ITS) 23(8), 11273–11286 (2022)

    Google Scholar 

  5. Fürnkranz, J., Gamberger, D., Lavrač, N.: Foundations of Rule Learning. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

    Book  MATH  Google Scholar 

  6. Fürnkranz, J., Hüllermeier, E., Mencía, E.L., Rapp, M.: Learning structured declarative rule sets - a challenge for deep discrete learning. arXiv: 2012.04377 (2020)

  7. González, D., Pérez, J., Milanés, V., Nashashibi, F.: A review of motion planning techniques for automated vehicles. Trans. Intell. Transp. Syst. (T-ITS) 17(4), 1135–1145 (2016)

    Google Scholar 

  8. Kapania, N.R., Govindarajan, V., Borrelli, F., Gerdes, J.C.: A hybrid control design for autonomous vehicles at uncontrolled crosswalks. In: Intelligent Vehicles Symposium (IV), pp. 1604–1611. IEEE (2019)

    Google Scholar 

  9. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from demonstration. In: International Conference on Robotics and Automation (ICRA), pp. 2641–2646. IEEE (2015)

    Google Scholar 

  10. Lee, J., Balakrishnan, A., Gaurav, A., Czarnecki, K., Sedwards, S.: WiseMove: a framework to investigate safe deep reinforcement learning for autonomous driving. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 350–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_20

    Chapter  Google Scholar 

  11. Likmeta, A., Metelli, A.M., Tirinzoni, A., Giol, R., Restelli, M., Romano, D.: Combining reinforcement learning with rule-based controllers for transparent and general decision-making in autonomous driving. Robot. Auton. Syst. 131, 103568 (2020)

    Article  Google Scholar 

  12. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)

    Article  Google Scholar 

  13. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., et al.: Junior: the Stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008)

    Article  Google Scholar 

  14. Niehaus, A., Stengel, R.F.: An expert system for automated highway driving. IEEE Control Syst. Mag. 11(3), 53–61 (1991)

    Article  Google Scholar 

  15. Paden, B., Čáp, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. Trans. Intell. Veh. (T-IV) 1(1), 33–55 (2016)

    Google Scholar 

  16. de Sainte Marie, C.: Learning decision rules or learning decision models? In: Moschoyiannis, S., Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds.) RuleML+RR 2021. LNCS, vol. 12851, pp. 276–283. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91167-6_19

    Chapter  Google Scholar 

  17. Shekhar, C., Moisan, S., Thonnat, M.: Use of a real-time perception program supervisor in a driving scenario. In: Intelligent Vehicles Symposium (IV), pp. 363–368. IEEE (1994)

    Google Scholar 

  18. Urmson, C., et al.: Autonomous driving in traffic: boss and the urban challenge. AI Mag. 30(2), 17 (2009)

    Google Scholar 

  19. Vanderhaegen, F.: A rule-based support system for dissonance discovery and control applied to car driving. Expert Syst. Appl. 65, 361–371 (2016)

    Article  Google Scholar 

  20. Wang, Q., Ayalew, B., Weiskircher, T.: Predictive maneuver planning for an autonomous vehicle in public highway traffic. Trans. Intell. Transp. Syst. 20(4), 1303–1315 (2019)

    Article  Google Scholar 

  21. Xiao, W., et al.: Rule-based optimal control for autonomous driving. In: ACM/IEEE 12th International Conference on Cyber-Physical Systems (ICCPS), pp. 143–154. ACM (2021)

    Google Scholar 

  22. Yay, E., Madrid, N.M., Ramírez, J.A.O.: Using an improved rule match algorithm in an expert system to detect broken driving rules for an energy-efficiency and safety relevant driving system. Procedia Comput. Sci. 35, 127–136 (2014)

    Article  Google Scholar 

  23. Zakas, N.C.: Understanding ECMAScript 6: The Definitive Guide for JavaScript Developers. No Starch Press, San Francisco (2016)

    Google Scholar 

  24. Zhao, L., Ichise, R., Sasaki, Y., Liu, Z., Yoshikawa, T.: Fast decision making using ontology-based knowledge base. In: Intelligent Vehicles Symposium (IV), pp. 173–178. IEEE (2016)

    Google Scholar 

  25. Zimmerman, N., Schlenoff, C., Balakirsky, S.: Implementing a rule-based system to represent decision criteria for on-road autonomous navigation. In: Spring Symposium on Knowledge Representation and Ontologies for Autonomous Systems. AAAI (2004)

    Google Scholar 

Download references

Acknowledgment

This work was supported throughout its development by Fonds de Recherche du Québec – Nature et Technologies (FRQNT) and Natural Sciences and Engineering Research Council (NSERC) Discovery Grant. Author SS was supported by Japanese Science and Technology agency (JST) ERATO project JPMJER1603: HASUO Metamathematics for Systems Design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bouchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bouchard, F., Sedwards, S., Czarnecki, K. (2022). A Rule-Based Behaviour Planner for Autonomous Driving. In: Governatori, G., Turhan, AY. (eds) Rules and Reasoning. RuleML+RR 2022. Lecture Notes in Computer Science, vol 13752. Springer, Cham. https://doi.org/10.1007/978-3-031-21541-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21541-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21540-7

  • Online ISBN: 978-3-031-21541-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics