Skip to main content

Analysis of the Influence of the MVDR Filter Parameters on the Performance of SSVEP-Based BCI

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

Brain-Computer Interface (BCI) is a communication method based on brain signals analysis. The interface enables controlling applications such as a wheelchair with minimal muscle effort, making BCI systems attractive in assistive technology development. Currently, Steady-State Visually Evoked Potential (SSVEP) represents one of the most promising BCI paradigms, since a specific physiological brain response is evoked when a subject is exposed to continuously flickering visual stimuli. In this study, we evaluated how the parameters of the Minimum Variance Distortionless Response (MVDR) filter impact the performance of the SSVEP-based BCI. Three parameters were analyzed: filter order, number of EEG signals combined at the filter input, and number of electrodes employed for filtering. Our results show that it is convenient to employ fewer electrodes, as they are closer to the visual cortex region, and to combine them spatially, using low filter orders. The best performance, among the tested configurations, was 80.20 ± 6.65%, obtained with filter order nine, employing nine EEG signals and spatially combining the inputs with eight signals at a time.

Supported by FAPEMIG and UFOP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carvalho, S.N., et al.: Space-time filter for SSVEP brain-computer interface based on the minimum variance distortionless response. Med. Biol. Eng. Comput. 59(5), 1133–1150 (2021). https://doi.org/10.1007/s11517-021-02345-7

    Article  Google Scholar 

  2. Graimann, B., Allison, B., Pfurtscheller, G.: Brain-computer interfaces: a gentle introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces. The Frontiers Collection, pp. 1–27. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02091-9_1

    Chapter  Google Scholar 

  3. Guger, C., et al.: How many people could use an SSVEP BCI? Front. Neurosci. 6, 169 (2012)

    Article  Google Scholar 

  4. Haykin, S.: Neural Networks and Learning Machines, 3 edn. Pearson Education India (2010)

    Google Scholar 

  5. Benesty, J., Chen, J., Huang, Y.: A generalized MVDR spectrum. IEEE Trans. Audio Electroacoust. 12(8673104), 827–830 (2005)

    Google Scholar 

  6. Liu, B., Chen, X., Shi, N., Wang, Y., Gao, S., Gao, X.: Improving the performance of individually calibrated SSEVP-BCI by task-discriminant component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1998–2007 (2021)

    Article  Google Scholar 

  7. Liu, Z., Shore, J., Wang, M., Yuan, F., Buss, A., Zhao, X.: A systematic review on hybrid EEG/fNIRS in brain-computer interface. Biomed. Signal Process. Control 68, 102595 (2021)

    Google Scholar 

  8. Neumann, W.J., et al.: The sensitivity of ECG contamination to surgical implantation site in brain computer interfaces. Brain Stimul. 14(5), 1301–1306 (2021)

    Article  Google Scholar 

  9. Oikonomou, V.P., Nikolopoulos, S., Kompatsiaris, I.: A Bayesian multiple kernel learning algorithm for SSVEP BCI detection. IEEE J. Biomed. Health Inform. 23(5), 1990–2001 (2018)

    Article  Google Scholar 

  10. Oppenheim, A.V.: Discrete-Time Signal Processing. Pearson Education India (1999)

    Google Scholar 

  11. Sözer, A.T., Fidan, C.B.: Novel spatial filter for SSVEP-based BCI: a generated reference filter approach. Comput. Biol. Med. 96, 98–105 (2018)

    Article  Google Scholar 

  12. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Academic Press, San Diego (2006)

    MATH  Google Scholar 

  13. Vargas, G.V., Carvalho, S.N., Boccato, L.: Analysis of the spatiotemporal MVDR filter applied to BCI-SSVEP and a filter bank extension. Biomed. Signal Process. Control 73, 103459 (2022)

    Google Scholar 

  14. Vargas, G.V.: Filtragem espaço-temporal baseada no princípio MVDR aplicada a interfaces cérebro-computador sob o paradigma SSVEP. Master’s thesis, Universidade Estadual de Campinas (2021)

    Google Scholar 

  15. Vialatte, F.B., Maurice, M., Dauwels, J., Cichocki, A.: Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog. Neurobiol. 90(4), 418–438 (2010)

    Article  Google Scholar 

  16. Wang, Y., Chen, X., Gao, X., Gao, S.: A benchmark dataset for SSVEP-based brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1746–1752 (2016)

    Article  Google Scholar 

  17. Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., Vaughan, T.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harlei Miguel Arruda Leite .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lima, L.B., Viana, R.F., Rosa-Jr., J.M., Leite, H.M.A., Vargas, G.V., Carvalho, S.N. (2022). Analysis of the Influence of the MVDR Filter Parameters on the Performance of SSVEP-Based BCI. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics