Skip to main content

Time Robust Trees: Using Temporal Invariance to Improve Generalization

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13653))

Included in the following conference series:

  • 668 Accesses

Abstract

As time passes by, the performance of real-world predictive models degrades due to distributional shifts and learned spurious correlations. Typical countermeasures, such as retraining and online learning, can be costly and challenging in production, especially when accounting for business constraints and culture. Causality-based approaches aim to identify invariant mechanisms from data, thus leading to more robust predictors at the possible expense of decreasing short-term performance. However, most such approaches scale poorly to high dimensions or require extra knowledge such as data segmentation in representative environments. In this work, we develop the Time Robust Trees, a new algorithm for inducing decision trees with an inductive bias towards learning time-invariant rules. The algorithm’s main innovation is to replace the usual information-gain split criterion (or similar) with a new criterion that examines the imbalance among classes induced by the split through time. Experiments with real data show that our approach improves long-term generalization, thus offering an exciting alternative for classification problems under distributional shift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There is often an inductive bias in learning algorithms towards estimating simpler accurate models. For complex tasks, it is often the case that spurious correlations are often simpler than non-spurious ones [1, 32].

  2. 2.

    The source code and datasets used and install instructions are available on GitHub at (https://github.com/lgmoneda/time-robust-tree-paper).

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization (2019)

    Google Scholar 

  2. Bagnell, J.A.: Robust supervised learning. In: AAAI, pp. 714–719 (2005)

    Google Scholar 

  3. Bareinboim, E., Pearl, J.: Transportability from multiple environments with limited experiments: completeness results. Adv. Neural. Inf. Process. Syst. 27, 280–288 (2014)

    MATH  Google Scholar 

  4. Bishop, C.M.: Pattern recognition and machine learning. springer (2006)

    Google Scholar 

  5. Breiman, L.: Random forest. Mach. Learn. 45(1), 5–32 (2001)

    Google Scholar 

  6. Cartwright, N.: Two theorems on invariance and causality. Philos. Sci. 70(1), 203–224 (2003)

    Article  MathSciNet  Google Scholar 

  7. City of Chicago : Chicago crime - bigquery dataset (2021), version 1. Accessed 13 Mar 2021. https://www.kaggle.com/chicago/chicago-crime

  8. D’Amour, A., et al.: Underspecification presents challenges for credibility in modern machine learning. CoRR (2020). http://arxiv.org/abs/2011.03395v1

  9. Daoud, J.: Animal shelter dataset (2021), version 1. Accessed 13 Mar 2021. https://www.kaggle.com/jackdaoud/animal-shelter-analytics

  10. Goyal, A., et al.: Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893 (2019)

  11. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. arXiv preprint arXiv:2007.01434 (2020)

  12. Hu, W., Niu, G., Sato, I., Sugiyama, M.: Does distributionally robust supervised learning give robust classifiers? In: International Conference on Machine Learning, pp. 2029–2037. PMLR (2018)

    Google Scholar 

  13. Karimi, K., Hamilton, H.J.: Generation and interpretation of temporal decision rules. arXiv preprint arXiv:1004.3334 (2010)

  14. Karimi, K., Hamilton, H.J.: Temporal rules and temporal decision trees: A C4. 5 approach. Department of Computer Science, University of Regina Regina, Saskatchewan \(\ldots \) (2001)

    Google Scholar 

  15. Ke, N.R., et al.: Learning neural causal models from unknown interventions. arXiv preprint arXiv:1910.01075 (2019)

  16. Locatello, F., Poole, B., Rätsch, G., Schölkopf, B., Bachem, O., Tschannen, M.: Weakly-supervised disentanglement without compromises. In: International Conference on Machine Learning, pp. 6348–6359. PMLR (2020)

    Google Scholar 

  17. Mitchell, T.M., et al.: Machine learning (1997)

    Google Scholar 

  18. Moneda, L.: Globo esporte news dataset (2020), version 11. Accessed 31 Mar 2021. https://www.kaggle.com/lgmoneda/ge-soccer-clubs-news

  19. Mouillé, M.: Kickstarter projects dataset (2018), version 7. Accessed 13 Mar 2021. https://www.kaggle.com/kemical/kickstarter-projects?select=ks-projects-201612.csv

  20. Pearl, J.: Causality. Cambridge University Press, Cambridge, UK, 2nd edn. (2009). https://doi.org/10.1017/CBO9780511803161

  21. Pearson, K.: On a form of spurious correlation which may arise when indices are useed in the measurement of organs. In: Royal Society of London Proceedings, vol. 60, pp. 489–502 (1897)

    Google Scholar 

  22. Peters, J., Bühlmann, P., Meinshausen, N.: Causal inference using invariant prediction: identification and confidence intervals. arXiv preprint arXiv:1501.01332 (2015)

  23. Peters, J., Janzing, D., Schlkopf, B.: Elements of causal inference: foundations and learning algorithms. The MIT Press (2017)

    Google Scholar 

  24. Rabanser, S., Günnemann, S., Lipton, Z.C.: Failing loudly: an empirical study of methods for detecting dataset shift (2018)

    Google Scholar 

  25. Ribeiro, M.T., Singh, S., Guestrin, C.: why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  26. Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal and anticausal learning. arXiv preprint arXiv:1206.6471 (2012)

  27. Shastry, A.: San francisco building permits dataset (2018), version 1. Accessed 13 Mar 2021. https://www.kaggle.com/aparnashastry/building-permit-applications-data

  28. Sionek, A.: Brazilian e-commerce public dataset by olist (2019), version 7. Accessed 13 Mar 2021. https://www.kaggle.com/olistbr/brazilian-ecommerce

  29. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc.: Ser. B (Methodol.) 36(2), 111–133 (1974)

    MathSciNet  MATH  Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  31. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113(523), 1228–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wilson, A.C., Roelofs, R., Stern, M., Srebro, N., Recht, B.: The marginal value of adaptive gradient methods in machine learning. arXiv preprint arXiv:1705.08292 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Moneda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moneda, L., Mauá, D. (2022). Time Robust Trees: Using Temporal Invariance to Improve Generalization. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics