Skip to main content

Artificial Neural Networks to Analyze Energy Consumption and Temperature of UAV On-Board Computers Executing Algorithms for Object Detection

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Abstract

When incorporating object detection models into unmanned aerial vehicles (UAVs) on-board computers, two aspects are relevant aspects. Firstly, the energy consumption required by the computer on board the UAV during the mission, since low-cost electric UAVs currently have low flight autonomy. Moreover, during the mission, the computer’s processor may suffer overheating caused by the running algorithm, which may directly impair the continuity of a given task or burn the computer. In this study, we aim to estimate the energy consumption and make temperature predictions of a computer embedded in UAVs for missions involving object detection. We propose a method, Analyzing Energy Consumption and Temperature of On-board computer of UAVs via Neural Networks (ETOUNN), which uses a multilayer perceptron (MLP) network to estimate the energy consumption and a long short-term memory (LSTM) network for predicting temperature. Our experiment relied on a Raspberry Pi 4 8 GB computer running nine popular models of object detectors (deep neural networks): eight of which are pre-trained models of the YOLO family, and one Mask R-CNN network. Regarding energy consumption, we compared our method to multivariate and simple regression-based on two metrics: mean squared error (MSE) and the \(R^2\) regression score function. As for temperature prediction and considering the same metrics, ETOUNN was compared to the Autoregressive Integrated Moving Average (ARIMA), the Neural Basis Expansion Analysis for interpretable Time Series forecasting (N-BEATS), and a gated recurrent unit (GRU) network. In both comparisons, our method presented superior performances, showing that it is a promising strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/RenatoMaximiano/ETOUNN. Access on: August 30, 2022.

References

  1. AlexeyAB (2021). https://github.com/AlexeyAB/darknet. Accessed 4 Feb 2022

  2. Anggraeni, S., et al.: The deployment of drones in sending drugs and patienblood samples covid-19. Indonesian J. Sci. Technol., 18–25 (2020)

    Google Scholar 

  3. Bekaroo, G., Santokhee, A.: Power consumption of the raspberry pi: a comparative analysis. In: 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech), pp. 361–366. IEEE (2016)

    Google Scholar 

  4. Benoit-Cattin, T., Velasco-Montero, D., Fernández-Berni, J.: Impact of thermal throttling on long-term visual inference in a cpu-based edge device. Electronics 9(12), 2106 (2020)

    Article  Google Scholar 

  5. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  6. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678 (2016)

  7. in Context, C.O. (2021). https://cocodataset.org/home. Accessed 4 Feb 2022

  8. Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (gru) neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1597–1600. IEEE (2017)

    Google Scholar 

  9. DJI (2021). https://www.dji.com/br. Accessed 25 Feb 2022

  10. ESCOLADEESTUDANTES (2021). https://github.com/escoladeestudantes/opencv/tree/min/22_ObjectDetection_Mask-RCNN_Inception_v2_COCO. Accessed 4 Nov 2021

  11. FILMORA (2021). https://filmora.wondershare.com/drones/drones-with-longest-flight-time.html. Accessed 25 Oct 2021

  12. Fornari, G., de Santiago Júnior, V.A., Shiguemori, E.H.: A self-adaptive approach for autonomous UAV navigation via computer vision. In: Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) ICCSA 2018. LNCS, vol. 10961, pp. 268–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95165-2_19

    Chapter  Google Scholar 

  13. Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

    Article  Google Scholar 

  14. Gonzalez-R, P.L., Canca, D., Andrade-Pineda, J.L., Calle, M., Leon-Blanco, J.M.: Truck-drone team logistics: a heuristic approach to multi-drop route planning. Transp. Res. Part C Emerging Technol. 114, 657–680 (2020)

    Article  Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Joseph, F.J.J.: Iot based weather monitoring system for effective analytics. Int. J. Eng. Adv. Technol. 8(4), 311–315 (2019)

    Google Scholar 

  17. Jr., J.D.A.: Fundamentos de Engenharia Aeronautica (2015)

    Google Scholar 

  18. Kadota, K., Taniguchi, I., Tomiyama, H.: Measurement of performance and energy consumption of opencv programs on raspberry pi. Bull. Networking Comput. Syst. Softw. 9(1), 35–39 (2020)

    Google Scholar 

  19. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for uavs: current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)

    Article  Google Scholar 

  20. Kassim, Y.M., Byrne, M.E., Burch, C., Mote, K., Hardin, J., Larsen, D.R., Palaniappan, K.: Small object bird detection in infrared drone videos using mask r-cnn deep learning. Electronic Imaging 2020(8), 85–1 (2020)

    Google Scholar 

  21. Katipamula, S., Reddy, T.A., Claridge, D.E.: Multivariate regression modeling (1998)

    Google Scholar 

  22. Kulbacki, M., et al.: Survey of drones for agriculture automation from planting to harvest. In: 2018 IEEE 22nd International Conference on Intelligent Engineering Systems (INES), pp. 000353–000358. IEEE (2018)

    Google Scholar 

  23. Langelaan, J.W., Schmitz, S., Palacios, J., Lorenz, R.D.: Energetics of rotary-wing exploration of titan. In: 2017 IEEE Aerospace Conference, pp. 1–11. IEEE (2017)

    Google Scholar 

  24. Machowski, J., Dzieńkowski, M.: Selection of the type of cooling for an overclocked raspberry pi 4b minicomputer processor operating at maximum load conditions. J. Comput. Sci. Inst. 18, 55–60 (2021)

    Article  Google Scholar 

  25. Manganiello, F.: Computer vision on raspberry pi. In: Computer Vision with Maker Tech, pp. 159–225. Springer (2021)

    Google Scholar 

  26. Marin, L.: The humanitarian drone and the borders: unveiling the rationales underlying the deployment of drones in border surveillance. In: Custers, B. (ed.) The Future of Drone Use. ITLS, vol. 27, pp. 115–132. T.M.C. Asser Press, The Hague (2016). https://doi.org/10.1007/978-94-6265-132-6_6

    Chapter  Google Scholar 

  27. Morettin, P.A., Toloi, C.M.d.C.: Análise de séries temporais (2004)

    Google Scholar 

  28. Morimitsu, H.: Uma abordagem estrutural para detecção de objetos e localização em ambientes internos por dispositivos móveis. Ph.D. thesis, Universidade de São Paulo (2011)

    Google Scholar 

  29. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-beats: neural basis expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437 (2019)

  30. Phung, M.D., Quach, C.H., Dinh, T.H., Ha, Q.: Enhanced discrete particle swarm optimization path planning for uav vision-based surface inspection. Autom. Constr. 81, 25–33 (2017)

    Article  Google Scholar 

  31. Prathaban, T., Thean, W., Sazali, M.I.S.M.: A vision-based home security system using opencv on raspberry pi 3. In: AIP Conference Proceedings, vol. 2173, p. 020013. AIP Publishing LLC (2019)

    Google Scholar 

  32. RASPBERRY-PI (2022). https://www.raspberrypi.com/products/raspberry-pi-4-model-b/. Accessed 25 Feb 2022

  33. RASPBERRY-PI (2022). https://www.raspberrypi.com/documentation/computers/remote-access.html. Accessed 25 Feb 2022

  34. Safadinho, D., Ramos, J., Ribeiro, R., Filipe, V., Barroso, J., Pereira, A.: Uav landing using computer vision techniques for human detection. Sensors 20(3), 613 (2020)

    Article  Google Scholar 

  35. SUPEREYES (2021). https://supereyes.ru/img/instructions/Instruction_UM34(C).pdf. Accessed 4 Oct 2021

  36. Szolga, L.A.: On flight real time image processing by drone equipped with raspberry pi4. In: 2021 IEEE 27th International Symposium for Design and Technology in Electronic Packaging (SIITME), pp. 334–337. IEEE (2021)

    Google Scholar 

  37. Tang, R., Wang, W., Tu, Z., Lin, J.: An experimental analysis of the power consumption of convolutional neural networks for keyword spotting. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5479–5483. IEEE (2018)

    Google Scholar 

  38. Van Beeck, K., Ophoff, T., Vandersteegen, M., Tuytelaars, T., Scaramuzza, D., Goedemé, T.: Real-time embedded computer vision on UAVs: In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 665–674. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_40

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was developed within the IDeepS project which is supported by LNCC via resources of the SDumont supercomputer. This research was also supported by CAPES, grant #88887.610576/2021-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato de Sousa Maximiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Sousa Maximiano, R., de Santiago Júnior, V., Shiguemori, E.H. (2022). Artificial Neural Networks to Analyze Energy Consumption and Temperature of UAV On-Board Computers Executing Algorithms for Object Detection. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13654 . Springer, Cham. https://doi.org/10.1007/978-3-031-21689-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21689-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21688-6

  • Online ISBN: 978-3-031-21689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics