Abstract
Environmental working conditions are of crucial importance for job performance. Thus, thermal comfort helps the human body to withstand long working hours without stress. There are several indicators of heat stress, but one of the most complete is the WBGT (Wet Bulb Globe Temperature) index, which considers 3 temperatures to determine the heat stress index, the dry bulb temperature, the wet-bulb temperature, and the temperature of radiation. For this reason, this document describes the process of building a low-cost heat stress meter. Two DHT22 sensors and M5Stack Core2 controller are used that includes a screen for the presentation of the information. The user interface includes buttons for changing the view type to show indoor or outdoor results, as well as the battery level. In addition, all this information is sent to the IoT platform of ThingSpeak through internet access using WiFi communication, this information can be displayed graphically from a web browser and from anywhere in the world. The data are compared with a commercial meter to validate this prototype, obtaining an error of less than 5% and no significant differences were found. In this way, it is possible to offer equipment for industrial solutions, but at a fraction of its cost.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lundgren-Kownacki, K., Kjellberg, S.M., Gooch, P., Dabaieh, M., Anandh, L., Venugopal, V.: Climate change-induced heat risks for migrant populations working at brick kilns in India: a transdisciplinary approach. Int. J. Biometeorol. 62(3), 347–358 (2017). https://doi.org/10.1007/s00484-017-1476-0
Parsons, L.A., Masuda, Y.J., Kroeger, T., Shindell, D., Wolff, N.H., Spector, J.T.: Global labor loss due to humid heat exposure underestimated for outdoor workers. Environ. Res. Lett. 17, 014050 (2022). https://doi.org/10.1088/1748-9326/ac3dae
Ordunez, P., et al.: Chronic kidney disease epidemic in central america: urgent public health action is needed amid causal uncertainty. PLoS Negl. Trop. Dis. 8, e3019 (2014). https://doi.org/10.1371/journal.pntd.0003019
Sabrin, S., Zech, W.C., Nazari, R., Karimi, M.: Understanding occupational heat exposure in the United States and proposing a quantifying stress index. Int. Arch. Occup. Environ. Health 94(8), 1983–2000 (2021). https://doi.org/10.1007/s00420-021-01711-0
Ramanathan, N.L.: Physiological evaluation of the WBGT index for occupational heat stress. Am. Ind. Hyg. Assoc. J. 34, 375–383 (1973). https://doi.org/10.1080/0002889738506866
D’Ambrosio Alfano, F.R., Malchaire, J., Palella, B.I., Riccio, G.: WBGT index revisited after 60 years of use. Ann. Occup. Hyg. 58, 955–970 (2014). https://doi.org/10.1093/annhyg/meu050
Zare, S., et al.: A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather Clim. Extrem. 26, 100213 (2019). https://doi.org/10.1016/j.wace.2019.100213
Seo, Y., Powell, J., Strauch, A., Roberge, R., Kenny, G.P., Kim, J.H.: Heat stress assessment during intermittent work under different environmental conditions and clothing combinations of effective wet bulb globe temperature (WBGT). J. Occup. Environ. Hyg. 16, 467–476 (2019). https://doi.org/10.1080/15459624.2019.1612523
Brocherie, F., Millet, G.P.: Is the wet-bulb globe temperature (WBGT) index relevant for exercise in the heat? Sports Med. 45(11), 1619–1621 (2015). https://doi.org/10.1007/s40279-015-0386-8
Newth, D., Gunasekera, D.: Projected changes in wet-bulb globe temperature under alternative climate scenarios. Atmosphere (Basel) 9, 187 (2018). https://doi.org/10.3390/atmos9050187
Varela-Aldás, J., Fuentes, E.M., Ruales, B., Ichina, C.: Construction of a WBGT Index Meter Using Low Cost Devices. In: Rocha, Á., Ferrás, C., Montenegro Marin, C.E., Medina García, V.H. (eds.) ICITS 2020. AISC, vol. 1137, pp. 459–468. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40690-5_45
Matsui, K., Sakai, K.: A Proposal for a Dynamic Digital Map to Prevent Heatstroke Using IoT Data. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) AINA 2019. AISC, vol. 926, pp. 1205–1216. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15032-7_101
Brik, B., Esseghir, M., Merghem-Boulahia, L., Snoussi, H.: An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people. Build. Environ. 203, 108056 (2021). https://doi.org/10.1016/j.buildenv.2021.108056
Varela-Aldás, J., Pilla, J., Andaluz, V.H., Palacios-Navarro, G.: Commercial Entry Control Using Robotic Mechanism and Mobile Application for COVID-19 Pandemic. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12957, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87013-3_1
Miranda, M., Varela-Aldás, J., Palacios-Navarro, G.: Comparison of Blockly vs Arduino IDE for programming education using M5Stack Core2 ESP32 IoT Development Kit. In: 12th International Conference on Applied Human Factors and Ergonomics (AHFE 2021) and the Affiliated Conferences (2021). https://doi.org/10.54941/AHFE1001182
Cooper, E., Grundstein, A., Rosen, A., Miles, J., Ko, J., Curry, P.: An evaluation of portable wet bulb globe temperature monitor accuracy. J. Athl. Train. 52, 1161–1167 (2017). https://doi.org/10.4085/1062-6050-52.12.18
Fujinami, K.: Smartphone-based environmental sensing using device location as metadata. Int. J. Smart Sens. Intell. Syst. 9, 2257–2275 (2016). https://doi.org/10.21307/ijssis-2017-963
Vargas-Salgado, C., Chiñas-Palacios, C., Aguila-León, J., Alfonso-Solar, D.: Measurement of the black globe temperature to estimate the MRT and WBGT indices using a smaller diameter globe than a standardized one: Experimental analysis. In: 5TH CARPE CONFERENCE. pp. 201–207 (2019). https://doi.org/10.4995/carpe2019.2019.10203
Acknowledgments
Fraternal thanks are extended to the Universidad Tecnológica Indoamérica for providing the necessary resources for the development of this research and the dissemination of the results.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Varela-Aldás, J., Buele, J., Mosquera, H., Palacios-Navarro, G. (2022). Development of a WBGT Index Meter Based on M5Stack Core2. In: Duffy, V.G., Rau, PL.P. (eds) HCI International 2022 – Late Breaking Papers: Ergonomics and Product Design. HCII 2022. Lecture Notes in Computer Science, vol 13522. Springer, Cham. https://doi.org/10.1007/978-3-031-21704-3_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-21704-3_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21703-6
Online ISBN: 978-3-031-21704-3
eBook Packages: Computer ScienceComputer Science (R0)