Skip to main content

Using Deep Learning to Detect Anomalies in Traffic Flow

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

Uncertainty is an ever present challenge in data analysis. In particular, it is important to detect, as precisely as possible, unforeseen phenomena. In this paper we study the usefulness of two deep learning based methods (CNN auto-encoder and BiLSTM auto-encoder) to detect anomalies in situations that can be defined in terms of time series. In order to evaluate our approaches, we consider traffic flow data and perform experiments in two orthogonal scenarios: a guided scenario (training only with data considered as ‘normal’ after a naïve labelling) and a basic scenario. Our results show that if we train the models using only the considered ‘normal’ data, the obtained models do not achieve good results because none of them are able to detect all type of abnormal data correctly. In contrast, both models can detect all type of time series anomalies when we consider the basic scenario.

This work has been supported by the Spanish MINECO/FEDER projects FAME (RTI2018-093608-B-C31) and AwESOMe (PID2021-122215NB-C31) and the Region of Madrid project FORTE-CM (S2018/TCS-4314) co-funded by EIE Funds of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam, Md R., Gerostathopoulos, I., Amini, S., Prehofer, C., Attanasi, A.: Adaptable anomaly detection in traffic flow time series. In: 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), pp. 1–9 (2019)

    Google Scholar 

  2. Corral-Plaza, D., Medina-Bulo, I., Ortiz, G., Boubeta-Puig, J.: A stream processing architecture for heterogeneous data sources in the internet of things. Comput. Standard. Interfaces 70, 103426 (2020)

    Article  Google Scholar 

  3. Corral-Plaza, D., Ortiz, G., Medina-Bulo, I., Boubeta-Puig, J.: MEdit4CEP-SP: a model-driven solution to improve decision-making through user-friendly management and real-time processing of heterogeneous data streams. Knowl. Based Syst. 213, 106682 (2021)

    Article  Google Scholar 

  4. Ding, N., Ma, H., Gao, H., Ma, H., Tan, G.: Real-time anomaly detection based on long short-term memory and gaussian mixture model. Comput. Electr. Eng. 79, 106458, (2019)

    Google Scholar 

  5. Djenouri, Y., Belhadi, A., Lin, J. C.-W., Cano, A.: Adapted k-nearest neighbors for detecting anomalies on spatio-temporal traffic flow. IEEE Access 7, 10015–10027 (2019)

    Google Scholar 

  6. Djenouri, Y., Belhadi, A., Lin, J. C.-W., Djenouri, D., Cano, A.: A survey on urban traffic anomalies detection algorithms. IEEE Access 7, 12192–12205 (2019)

    Google Scholar 

  7. Djenouri, Y., Zimek, A., Chiarandini, M.: Outlier detection in urban traffic flow distributions. In: 2018 IEEE International Conference on Data Mining (ICDM), pp. 935–940 (2018)

    Google Scholar 

  8. Gugulothu, N., Malhotra, P., Vig, L., Shroff, G.: Sparse neural networks for anomaly detection in high-dimensional time series (2018)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Hong, Y., Wang, L., Kang, J., Wang, H., Gao, Z.: A novel application approach for anomaly detection and fault determination process based on machine learning. In: 2020 6th International Symposium on System and Software Reliability (ISSSR), pp. 1–5 (2020)

    Google Scholar 

  11. Hsieh, R.-J., Chou, J., Ho, C.-H.: Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing, pp. 90–97 (2019)

    Google Scholar 

  12. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Söderström, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. CoRR, abs/1802.04431 (2018)

    Google Scholar 

  13. Jiang, J., Chen, J., Gu, T., Raymond Choo, K.-K., Liu, C., Yu, M., Huang, W., Mohapatra, P.: Anomaly detection with graph convolutional networks for insider threat and fraud detection. In: MILCOM 2019–2019 IEEE Military Communications Conference (MILCOM), pp. 109–114 (2019)

    Google Scholar 

  14. Karthik, S., Supreetha, H.V., Sandhya, S.: Detection of anomalies in time series data. In: 2021 IEEE International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), pp. 1–5 (2021)

    Google Scholar 

  15. Atzmueller, M., Arnu, D., Schmidt, A.: Anomaly detection and structural analysis in industrial production environments. In: Data Science – Analytics and Applications, pp. 91–95. Springer, Wiesbaden (2017). https://doi.org/10.1007/978-3-658-19287-7_13

    Chapter  Google Scholar 

  16. Laorden, C., Ugarte-Pedrero, X., Santos, I., Sanz, B., Nieves, J., Bringas, P.G.: Study on the effectiveness of anomaly detection for spam filtering. Inf. Sci. 277, 421–444 (2014)

    Article  Google Scholar 

  17. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  18. Li, Y., Guo, T., Xia, R., Xie, W.: Road traffic anomaly detection based on fuzzy theory. IEEE Access 6, 40281–40288 (2018)

    Article  Google Scholar 

  19. Rajeswari, A.M., Yalini, S.K., Janani, R., Rajeswari, N., Rajeswari, N., Deisy, C.: A comparative evaluation of supervised and unsupervised methods for detecting outliers. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 1068–1073 (2018)

    Google Scholar 

  20. Ripan, R.C., Sarker, I.H., Furhad, M.H., Anwar,M.M., Hoque, M.M: An effective heart disease prediction model based on machine learning techniques. https://www.preprints.org/manuscript/202011.0744/ (2020)

  21. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. In: H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, In: Advances in Neural Information Processing Systems vol. 33, pp. 13016–13026 Curran Associates Inc (2020)

    Google Scholar 

  22. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD ’19, pp. 2828–2837, New York, NY, USA, (2019). Association for Computing Machinery

    Google Scholar 

  23. Tišljarić, L., Fernandes, S., Carić, T., Gama, J.: Spatiotemporal road traffic anomaly detection: a tensor-based approach. Appl. Sci. 11(24), 12017 (2021)

    Google Scholar 

  24. Werra, L.V., Tunstall, L., Hofer, S.: Unsupervised anomaly detection for seasonal time series. In: 2019 6th Swiss Conference on Data Science (SDS), pp. 136–137 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Méndez, M., Ibias, A., Núñez, M. (2022). Using Deep Learning to Detect Anomalies in Traffic Flow. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13757. Springer, Cham. https://doi.org/10.1007/978-3-031-21743-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21743-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21742-5

  • Online ISBN: 978-3-031-21743-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics