Skip to main content

Learning to Map the GDPR to Logic Representation on DAPRECO-KB

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13757))

Included in the following conference series:

  • 1149 Accesses

Abstract

General Data Protection Regulation (GDPR) is an important framework for data protection that applies to all European Union countries. Recently, DAPRECO knowledge base (KB) which is a repository of if-then rules written in LegalRuleML as a formal logic representation of GDPR has been introduced to assist compliance checking. DAPRECO KB is, however, constructed manually and the current version does not cover all the articles in GDPR. Looking for an automated method, we present our machine translation approach to obtain a semantic parser translating the regulations in GDPR to their logic representation on DAPRECO KB. We also propose a new version of GDPR Semantic Parsing data by splitting each complex regulation into simple subparagraph-like units and re-annotating them based on published data from DAPRECO project. Besides, to improve the performance of our semantic parser, we propose two mechanisms: Sub-expression intersection and PRESEG. The former deals with the problem of duplicate sub-expressions while the latter distills knowledge from pre-trained language model BERT. Using these mechanisms, our semantic parser obtained a performance of 60.49% F1 in sub-expression level, which outperforms the baseline model by 5.68%.

M.-P. Nguyen and T.-T-.T. Nguyen—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gdpr-info.eu/.

  2. 2.

    https://www.w3.org/TR/odrl-model/.

  3. 3.

    https://github.com/dapreco/daprecokb/blob/master/gdpr/rioKB_GDPR.xml.

References

  1. Aberkane, A.-J., Poels, G., Broucke, S.V.: Exploring automated GDPR-compliance in requirements engineering: a systematic mapping study. IEEE Access 9, 66542–66559 (2021)

    Article  Google Scholar 

  2. Chen, Q., Zhuo, Z., Wang, W.: Bert for joint intent classification and slot filling. arXiv preprint arXiv:1902.10909 (2019)

  3. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, June 2019, pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  4. Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia, July 2018, pp. 731–742. Association for Computational Linguistics (2018)

    Google Scholar 

  5. Jia, R., Liang, P.: Data recombination for neural semantic parsing. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, August 2016, pp. 12–22. Association for Computational Linguistics (2016)

    Google Scholar 

  6. Min, S., Zhong, V., Zettlemoyer, L., Hajishirzi, H.: Multi-hop reading comprehension through question decomposition and rescoring. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 6097–6109. Association for Computational Linguistics (2019)

    Google Scholar 

  7. Mousavi, N., Scerri, S., Lehman, J.: Knight: mapping privacy policies to GDPR, August 2018

    Google Scholar 

  8. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., Paschke, A.: LegalRuleML: XML-based rules and norms. In: Olken, F., Palmirani, M., Sottara, D. (eds.) RuleML 2011. LNCS, vol. 7018, pp. 298–312. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24908-2_30

    Chapter  Google Scholar 

  9. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: PrOnto: privacy ontology for legal reasoning. In: Kő, A., Francesconi, E. (eds.) EGOVIS 2018. LNCS, vol. 11032, pp. 139–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98349-3_11

    Chapter  Google Scholar 

  10. Pandit, H.J., Fatema, K., O’Sullivan, D., Lewis, D.: Gdprtext - GDPR as a linked data resource. In: ESWC (2018)

    Google Scholar 

  11. Pandit, H.J., Lewis, D.: Modelling provenance for GDPR compliance using linked open data vocabularies. In: PrivOn@ISWC (2017)

    Google Scholar 

  12. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.: Formalizing GDPR provisions in reified I/O logic: the DAPRECO knowledge base. J. Log. Lang. Inf. 29(4), 401–449 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Robaldo, L., Sun, X.: Reified input/output logic: combining input/output logic and reification to represent norms coming from existing legislation. J. Log. Comput. 27(8), 2471–2503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, X., van der Torre, L.: Combining constitutive and regulative norms in input/output logic. In: Cariani, F., Grossi, D., Meheus, J., Parent, X. (eds.) DEON 2014. LNCS (LNAI), vol. 8554, pp. 241–257. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08615-6_18

    Chapter  Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates Inc (2017)

    Google Scholar 

  16. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.: RAT-SQL: relation-aware schema encoding and linking for text-to-SQL parsers. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, July 2020, pp. 7567–7578. Association for Computational Linguistics (2020)

    Google Scholar 

  17. Wang, Y., Berant, J., Liang, P.: Building a semantic parser overnight. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, July 2015, pp. 1332–1342. Association for Computational Linguistics (2015)

    Google Scholar 

  18. Zhang, H., Cai, J., Xu, J., Wang, J.: Complex question decomposition for semantic parsing. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 4477–4486. Association for Computational Linguistics (2019)

    Google Scholar 

Download references

Acknowledgment.

This work was supported by JSPS Kakenhi Grant Number 20H04295, 20K20406, and 20K20625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Phuong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, MP., Nguyen, TTT., Tran, V., Nguyen, HT., Nguyen, LM., Satoh, K. (2022). Learning to Map the GDPR to Logic Representation on DAPRECO-KB. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13757. Springer, Cham. https://doi.org/10.1007/978-3-031-21743-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21743-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21742-5

  • Online ISBN: 978-3-031-21743-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics