Skip to main content

A Survey of Abstractive Text Summarization Utilising Pretrained Language Models

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Abstract

We live in a digital era - an era of technology, artificial intelligence, big data, and information. The data and information on which we depend to fulfil several daily tasks and decision-making can become overwhelming to deal with and requires effective processing. This can be achieved by designing improved and robust automatic text summarization systems. These systems reduce the size of text document while retaining the salient information. The resurgence of deep learning and its progress from the Recurrent Neural Networks to deep transformer based Pretrained Language Models (PLM) with huge parameters and ample world and common-sense knowledge have opened the doors for huge success and improvement of the Natural Language Processing tasks including Abstractive Text Summarization (ATS). This work surveys the scientific literature to explore and analyze recent research on pre-trained language models and abstractive text summarization utilizing these models. The pretrained language models on abstractive summarization tasks have been analyzed quantitatively based on ROUGE scores on four standard datasets while the analysis of state-of-the-art ATS models has been conducted qualitatively to identify some issues and challenges encountered on finetuning large PLMs on downstream datasets for abstractive summarization. The survey further highlights some techniques that can help boost the performance of these systems. The findings in terms of performance improvement reveal that the models with better performance use either one or a combination of these strategies: (1) Domain Adaptation, (2) Model Augmentation, (3) Stable finetuning, and (4) Data Augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Klymenko, O.,  Braun, D.,  Matthes, F.:  Automatic Text Summarization: a State-of-the-Art Review, vol. 1, pp. 648–655 (2020)

    Google Scholar 

  2. Han, X., et al.: Pre-Trained Models: Past, Present and Future. AI Open (2021). https://doi.org/10.1016/j.aiopen.2021.08.002

    Article  Google Scholar 

  3. Hasan, T., et al.:  XL-Sum: large-scale multilingual abstractive summarization for 44 languages. In: ACL-IJCNLP, pp. 4693–4703 (2021)

    Google Scholar 

  4. Cao, Y., Wan, X., Yao, J., Yu, D.: MultiSumm: Towards a Unified Model for Multi-Lingual Abstractive Summarization. Proc. AAAI 34(01), 11–18 (2020). https://doi.org/10.1609/aaai.v34i01.5328

    Article  Google Scholar 

  5. Syed, A.A., Gaol, F.L., Matsuo, T.: A survey of the state-of-the-art models in neural abstractive text summarization. IEEE Access 9, 13248–13265 (2021)

    Article  Google Scholar 

  6. Devlin, J., et al.: BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL-HLT 1, 4171–4186 (2019)

    Google Scholar 

  7.  Peters, M.E., et al.: Improving language understanding by generative pre-training. In: OpenAI, pp. 1–10 (2018)

    Google Scholar 

  8. K. Song, X. Tan, T. Qin, J. Lu, and T. Y. Liu, “MASS: Masked sequence to sequence pre-training for language generation,” 36th ICML, pp. 10384–10394, 2019.

    Google Scholar 

  9. Dong, L., et al.:  Unified language model pre-training for natural language understanding and generation. In: NIPS., vol. 32 (2019)

    Google Scholar 

  10. Lewis, M., et al.:  BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. In: ACL, pp. 7871–7880 (2020)

    Google Scholar 

  11. Zhang, J., Zhao, Y.,  Saleh, M.,  Liu, P. J.: PEGASUS: pre-training with extracted gap-sentences for abstractive summarization. In: ICML, pp. 11328–11339 (2020)

    Google Scholar 

  12. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 1–67 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Beltagy, I., et al.:  Longformer: The Long-Document Transformer (2020)

    Google Scholar 

  14. Zaheer, M., et al.:  “Big bird: Transformers for longer sequences,” 2020.

    Google Scholar 

  15. Aksenov, D., et al.:  Abstractive text summarization based on language model conditioning and locality modeling. In: 12th International Conference on Language Resources and Evaluation, pp. 6680–6689 (2020)

    Google Scholar 

  16. Zolotareva, E., et al.: Abstractive text summarization using transfer learning. CEUR Workshop Proc. 2718, 75–80 (2020)

    Google Scholar 

  17.  Zhao, S., You, F.,  Liu, Z.: Leveraging pre-trained language model for summary generation on short text.  IEEE Access 1–6 (2020)

    Google Scholar 

  18. Hoang, A., et al.: Efficient adaptation of pretrained transformers for abstractive summarization (2019)

    Google Scholar 

  19. Kim, S.:  Using pre-Trained Transformer for Better Lay Summarization, pp. 328–335 (2020).  https://doi.org/10.18653/v1/2020.sdp-1.38.

  20. Bajaj, A., et al.:  Long Document Summarization in a Low Resource Setting using Pretrained Language Models, pp. 71–80 (2021).  https://doi.org/10.18653/v1/2021.acl-srw.7.

  21. Xiao, L., Wang, L.,  He, H.: Modeling Content Importance for Summarization with Pre-trained Language Models, pp. 3606–3611 (2020)

    Google Scholar 

  22. Pilault, J.,  Li, R.,  Subramanian, S.,  Pal, C.: On Extractive and Abstractive Neural Document Summarization with Transformer Language Models, pp. 9308–9319 (2020)

    Google Scholar 

  23. Yu, T.,  Liu, Z.,  Fung, P.: AdaptSum: Towards Low-Resource Domain Adaptation for Abstractive Summarization, pp. 5892–5904 (2021)

    Google Scholar 

  24.  Aghajanyan, A.,  et al.: Better Fine-tuning by Reducing Representational Collapse (2021)

    Google Scholar 

  25. Liu, Y.,  Lapata, M: Text Summarization with Pretrained Encoders (2019)

    Google Scholar 

  26.  Fabbri, A., et al.:  Improving zero and few-shot abstractive summarization with intermediate fine-tuning and data augmentation. In: NAACL, pp. 704–717 (2021)

    Google Scholar 

  27. Gunel, B., Du, J.,  Conneau, A., Stoyanov, V.: Supervised contrastive learning for pre-trained language model fine-tuning. In: ICLR, pp. 1–21 (2021)

    Google Scholar 

  28. Gururangan, S., et al.:  Don’t stop pretraining: adapt language models to domains and tasks. In: ACL, pp. 8342–8360 (2020)

    Google Scholar 

  29.  Guo, H.,  et al.: Multi-source domain adaptation for text classification via DistanceNet-bandits. In: 34th AAAI Conference on Artifical Intelligence, pp. 7830–7838 (2020)

    Google Scholar 

  30. Khandelwal, U.,  Clark, K.,  Jurafsky, D., Brain, G.: Sample Efficient Text Summarization Using a Single Pre-Trained Transformer (2018)

    Google Scholar 

  31. Gu, J., Lu, Z., Li, H., Li, V.O.K.: Incorporating copying mechanism in sequence-to-sequence learning. ACL 3, 1631–1640 (2016)

    Google Scholar 

  32. See, A., Liu, P.J., Manning, C.D.: Get to the point: Summarization with pointer-generator networks. ACL 1, 1073–1083 (2017)

    Google Scholar 

  33. Chen, Q., et al.:  Distraction-Based Neural Networks for Document Summarization  (2016)

    Google Scholar 

  34. Li, S., Lei, D.,  Qin, P.,  Wang, W.Y.: Deep reinforcement learning with distributional semantic rewards for abstractive summarization. In: EMNLP, pp. 6038–6044 (2020)

    Google Scholar 

  35. Paulus, R.,  Xiong, C., Socher, R.: A deep reinforced model for abstractive summarization. In: 6th ICLR, pp. 1–12 (2018)

    Google Scholar 

  36. Li, W.: et al.: Improving neural abstractive document summarization with explicit information selection modeling.  In: EMNLP, pp. 1787–1796 (2020)

    Google Scholar 

  37. Kong, L., Jiang, H., Zhuang, Y., Lyu, J., Zhao, T.,  Zhang, C.: Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data, pp. 1326–1340 (2020). https://doi.org/10.18653/v1/2020.emnlp-main.102.

  38. Laifa, A., et al.:  Data augmentation impact on domain-specific text summarization Data augmentation impact on domain-specific text summarization (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Ayub Syed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syed, A.A., Gaol, F.L., Boediman, A., Matsuo, T., Budiharto, W. (2022). A Survey of Abstractive Text Summarization Utilising Pretrained Language Models. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13757. Springer, Cham. https://doi.org/10.1007/978-3-031-21743-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21743-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21742-5

  • Online ISBN: 978-3-031-21743-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics