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Abstract. In modern business processes, the amount of data collected
has increased substantially in recent years. Because this data can po-
tentially yield valuable insights, automated knowledge extraction based
on process mining has been proposed, among other techniques, to pro-
vide users with intuitive access to the information contained therein. At
present, the majority of technologies aim to reconstruct explicit business
process models. These are directly interpretable but limited concerning
the integration of diverse and real-valued information sources. On the
other hand, Machine Learning (ML) benefits from the vast amount of
data available and can deal with high-dimensional sources, yet it has
rarely been applied to being used in processes. In this contribution, we
evaluate the capability of modern Transformer architectures as well as
more classical ML technologies of modeling process regularities, as can
be quantitatively evaluated by their prediction capability. In addition,
we demonstrate the capability of attentional properties and feature rele-
vance determination by highlighting features that are crucial to the pro-
cesses’ predictive abilities. We demonstrate the efficacy of our approach
using five benchmark datasets and show that the ML models are capa-
ble of predicting critical outcomes and that the attention mechanisms or
XAI components offer new insights into the underlying processes.

Keywords: machine learning · process mining · transformer · XAI.

1 Introduction

Data is collected on anything, at any time, and in any location. A study by
IBM [6] found that in 2020, 40 trillion gigabytes (40 zettabytes) were generated.
The majority of data in the digital realm, however, is unstructured, making it
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impossible for humans to process it in its entirety and leaving businesses strug-
gling to manage such massive amounts of data. As a result, one of today’s major
issues for businesses is extracting information and value from data contained in
information systems.

Process Mining (PM) [2] is a relatively new area of research that lies between
process modeling and analysis, machine learning, and data mining. It is an um-
brella term for a family of techniques to facilitate the analysis of operational
processes by extracting knowledge from event logs in symbolic form, typically in
the form of process models. An event log serves as the input to PM algorithms,
which is essentially a database of events where each event has (1) a case id: a
unique identifier for a particular process instance, (2) an activity: description
of the event that is occurring, and (3) a timestamp: timestamp of the activity
execution. Resources, expenses, and other event-related attributes may also be
integrated by some techniques. PM techniques mostly address three tasks: (1)
process discovery: transform the event log into a process model which describes
the underlying process generating such data: common techniques include the
alpha algorithm, heuristic miner, or inductive miner [1], (2) conformance check-
ing: analyse discrepancies between an event log and an existing process model to
detect deviations, for quality checking or risk management [22], (3) process en-
hancement: improve the existing model’s performance in terms of specific process
performance metrics [34].

The initial focus of PM was the analysis of historical event data to generate
a process model. These monitoring systems are reactive in nature, allowing users
to detect a violation only after it has occurred. In contrast, Predictive Process
Mining (PPM) or Predictive Process Monitoring [18] aims for forward-looking
forms of PM with predictive qualities. It is a field that combines machine learn-
ing with process mining, aiming for specific tasks such as predicting next activity,
activity suffix, next timestamp, remaining time, attributes, attribute suffix, and
outcome of running cases. Most tasks can be modeled as classification problems,
except next timestamp and remaining time prediction tasks, which are regres-
sion problems. Some approaches which have been used in this realm are based
on recurrent neural networks (RNNs) or Long-short term memory (LSTMs)
[11,29,23]. Alternatives are based on Autoencoders [20] and Convolutional neu-
ral networks [24]. More recently, Transformer [32] models have gained a lot at-
tention due to their overwhelming success in computer vision [10] and natural
language processing [7]. Inspired by their success, recent approaches proposed
a Transformer-based model for process data [5]. A more detailed overview on
different models for the aforementioned tasks is covered in the survey [27].

Previous work in PPM faces a few challenges: unclear training/test set splits
and pre-processing schemes, which leads to noticeably different findings and chal-
lenges w.r.t reproducibility [33]. Since datasets often contain duplicates which
are not respected by the evaluation schemes, results are often confounded. In this
work, we investigate the capability of important classical ML technologies as well
as modern Transformers on a variety of benchmark sets with clear train/test
splits, duplicates respected, and different types of representation for classical
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schemes. More importantly, we do not treat the methods as opaque schemes,
but rather rely on feature relevance determination and attention mechanisms to
highlight the most important factors for each model. This is in line with previous
approaches such as [13], which visualizes the feature relevances of a gated graph
neural network or [14] which enhances next activity prediction using LSTMs with
counterfactual explanations for wrongly classified samples. Yet both approaches
evaluate the behavior on a single and specific dataset only. In our approach, we
systematically investigate relevant ML models for different approaches and rep-
resentations under the umbrella of explainability. In this way, we demonstrate
how, in many cases, the presence of specific events can easily fool the system
into relying on ‘trivial’ signals. When these are removed, ML models reveal not
only high quality behavior but also intriguing insights into the relevance of more
subtle signals or sequences.

Contributions Our contribution is twofold: a systematic study of the behavior of
diverse ML models with train-test split respecting the peculiarities of datasets
in PM and appropriate pre-processing, which prevent troubles due to data leak-
age. Second, we utilize eXplainable Artificial Intelligence (XAI) techniques to
compute and visualize the most crucial features. Our code is open source and
available at https://github.com/rizavelioglu/ml4prom.

The remainder of this work is structured as follows: In Section 2, we present
the peculiarities of the datasets and our methodology. In Section 3, we present
experiments and results. In Section 4, we conclude our contribution and discuss
potential directions for future work.

2 Methodology

In this section we describe the datasets and how they are pre-processed to be
utilized for binary classification, and highlight a few domain-specific peculiarities
which have to be taken into account. Then we introduce both classical ML models
as well as the state-of-the-art Transformer model used subsequently. Lastly, we
present the XAI techniques applied.

2.1 Data

We focus on five widely used datasets which come from a variety of domains
including loan applications, road traffic management, and healthcare. These
datasets are benchmarks from PM and are also accessible within the well-known
ProM tools [31], with the exception of healthcare, which contains personal data.
Each dataset has been labeled in order to assess explainability and put them in
the ML context. The variety of datasets enables us to check the robustness of our
methodology across a wide range of domains. To apply ML classifiers to event
data, we first transform the data into a format that resembles a binary classifi-
cation problem. We present five real-life event logs, each with its own evaluation
criterion for a prediction task (referred to as the positive/negative subpart of
the logs), and thereafter explain how they are transformed for the task.

https://github.com/rizavelioglu/ml4prom
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BPIC 2017 application+offer [8]: a loan application process of a Dutch financial
institute that covers 31 509 cases. Each case represents a loan application and
every application has an outcome: positive if the offer is accepted and negative
if rejected.

BPIC 2018 application [9]: an agricultural grant-application process of the Eu-
ropean Union that contains 43 809 applications over a period of three years
together with their duration.

Traffic Fine Management [16]: an event log of an information system managing
road traffic fines by the Italian government, with fines being payed or not

COVID [26]: a dataset of COVID-19 patients hospitalized at an intensive care
unit consisting of 216 cases, of which 196 are complete cases (patients have been
released either dead or alive) and 20 ongoing cases (partial process traces) that
were being treated in the COVID unit at the time data was exported.

Hospital Billing [19]: an event log of the billing of medical services that have
been provided by a regional hospital. Each trace in the event log keeps track of
the actions taken to bill a group of medical services. A randomly selected sample
of 100 000 process instances make up the event log.

2.2 Encoding

Table 1 shows the rules used to label the samples as well as important statistics.
One characteristic of typical PM datasets is that they can contain a large num-
ber of duplicates, i.e. observations of the same process. For example, Hospital
dataset contains 41 343 and 58 653 traces in positive and negative classes, respec-
tively. Out of those traces only 306 and 884 are unique. In addition, the top-10
most frequent traces make up the 95.3% and 89.7% of the whole traces. Hence
such data are challenging for ML due to a narrow variety. In addition, duplicates
need to be accounted for in evaluation to avoid information leakage.

Data consist of sequences of symbolic events of different length. For each
of these datasets we compute n-grams for n ∈ {1, 2, 3} to encode traces in
vectorial form for classic ML models. Unigrams (n=1) encode occurrence of
events, bigrams (n=2) encode two subsequent events and trigrams (n=3) encode
three subsequent events. Transformer models can directly deal with sequences.
The network learns a vector embedding for each event within a trace. This has
the advantage of avoiding problems caused by the high-dimensionality of one-hot
encoding method, for example.

2.3 Models

Using these representations, we train a variety of models, including Logistic
Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boost-
ing (GB), and Transformer models. We only present the LR, DT and Trans-
former models because the findings do not vary significantly. We selected LR
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Table 1: Datasets statistics and the rules used to generate binary classification
task (L+/L- represent positive/negative logs, respectively). The statistics are the
number of traces, the number of unique traces, the percentage of unique traces,
and lastly the cumulative percentage of the top-10 most frequent traces.

Dataset Class Classification Criteria traces uniq. uniq./% top-10%

BPIC17
L+ without activity ‘A incomplete’ 16 506 529 3.2 83.5
L- with activity ‘A incomplete’ 15 003 2101 14.0 51.5

Traffic
L+ end activity ‘Payment’ 67 201 122 0.2 99.1
L- end activity not ‘Payment’ 83 169 109 0.1 99.2

COVID
L+ with activity ‘Discharge alive’ 136 33 24.0 74.3
L- with activity ‘Discharge dead’ 60 20 33.0 83.3

BPIC18
L+ duration less than 9 months 27 966 1081 3.9 57.7
L- duration more than 9 months 15 843 477 3.0 82.1

Hospital
L+ duration less than 3 months 41 343 306 0.7 95.3
L- duration more than 3 months 58 653 884 1.5 89.7

and DT due to their widespread use and overall high performance for classifica-
tion problems [12], and we selected Transformer models due to their propensity
for learning complex patterns. The type of encoding used in this case limits the
amount of information that is accessible because only a portion of the sequen-
tial structure is represented. Conversely, transformer models can easily handle
sequential data. We use models as proposed in the works [32,5].

2.4 XAI

Since our primary concern is not the classification performance of our trained
models, but rather whether ML models can capture underlying regularities, we
employ XAI techniques to gain insight into which relationships between events
in the data are used by the models [21]. Unlike many explanation approaches
such as LIME [28], LRP [3], we are interested in global explanations rather than
explanations of single decisions. This is because our goal is not to comprehend
the ML model, but rather to gain understanding of the key components of the
PM as a whole, which can enable users to enhance processes. As an example, one
may anticipate altered process behavior if they come across a specific activity,
such as ‘Discharge dead’ in COVID dataset, which was identified as crucial for
the ML model. As a result, we strive for global explanations and, more specifi-
cally, we employ a number of well-established feature selection methods for both
linear and non-linear settings, including LR with LASSO as a linear model with
strong mathematical guarantees [30], DT as a non-linear model with efficient
Mean Decrease in Impurity (MDI) and permutation importance [17] that takes
into account non-linear relations between features to determine the relevances,
and Transformer model equipped with an attention mechanism that highlights
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Table 2: Datasets with features that leak label information.

Dataset Class Biased feature

BPIC17 L- ‘A Incomplete’

Traffic
L- ‘Send for Credit Collection’
L+ ‘Payment’

COVID
L- ‘Discharge dead’
L+ ‘Discharge alive’

complex relationships. Attention mechanisms are technically local explanations.
We utilize them to see if highly flexible non-linear explanations provide more
complex relations than global feature importance measures.

As a first result of the analysis, feature selection methods immediately reveal
a potential source of information leakage: Leaving the datasets as they are, the
algorithms rely on attributes that directly encode the class label but provide no
additional insight into the process. Table 2 shows the detected features that are
removed from the logs to avoid such trivial outcomes. All of the listed events
exist only in their respective class, e.g. ‘A Incomplete’ is present only in L- but
not in L+, except ‘Payment’ where the event is present in both classes. Therefore,
we removed the event only if it is the last event in a trace from L+, as that is
the source of leakage (see Table 1).

3 Experimental Results

In this section we present the data pre-processing pipeline used to transform all
five datasets for training. Then, we present the evaluation metric used as well as
the model design and training on each dataset. Finally, we present the scores of
different approaches on the binary classification task and the resulting feature
relevances. To save space, we limit ourselves to the BPIC17 dataset; results for
the other datasets can be found in the GitHub repository.

3.1 Data Split and Pre-Processing

For simplicity, we only consider event names to encode traces and no other
attributes, e.g. timestamp, or resource of an event. After computing unique
traces we randomly sample from them to construct train/test sets with a ra-
tio of 70%/30%, respectively. As the datasets are highly imbalanced, we sample
class-wise from data–preserving the proportion of classes both in train and test
sets. To account for frequency of traces, we keep the duplicate traces in train set
while removing the ones in test set.

We apply minimal pre-processing to data at hand. First, we remove the biased
features from traces. Then we add <start> and <end> tokens to the input to
explicitly define the beginning and the end of traces. To have a fixed-length input,
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the traces that are shorter than the longest trace in an event log are padded with
the <pad> token. We then build a token dictionary consisting of unique event
names in an event log and the aforementioned special tokens. Finally, the tokens
in the input are replaced by their unique integer values stored in the dictionary.

3.2 Evaluation Metric

Because the datasets are highly imbalanced, we measure performance using
the area under the receiver operating characteristic curve (AUROC) [4]. ROC
analysis does not favor models that outperform the majority class while under-
performing the minority class, which is desirable when working with imbalanced
data [20, p. 27]. The area under the curve of a binary classifier is the probability
that a classifier would rank a randomly chosen positive instance higher than a
randomly chosen negative one, which is given by the following equation:

AUROC =

∫ −∞
x=∞

TPR(T )FPR
′
(T )dT (1)

AUROC ranges from 0 to 1, with an uninformative classifier (random classifier)
producing a result of 0.5.

3.3 Model Design and Training

For ML models we utilize scikit-learn [25] and initialize the models with de-
fault parameters. For logistic regression, we employ regularization by a L1
penalty term(penalty hyper-parameter) with regularization strength (C hyper-
parameter). We use repeated stratified k -fold cross-validation (CV) to evaluate
and train a model across a number of iterations. The number of repeats is 50,
and the number of splits k = 5, yielding 250 models being trained. The reported
metric is then the average of all scores computed.

For Transformer model, following [5], we chose the embedding dimension
as 36, i.e. each trace is represented by a point in 36-dimensional space. Since
Transformer disregards the positional information of events in traces, we add
positional encoding to token embedding which have the same dimensions. Dur-
ing training, the model learns to pay attention to input embedding as well as
positional encoding in an end-to-end fashion. The embedding outputs are then
fed to a multi-head attention block with h = 6 heads. On the final layer of the
attention block, we aggregate features using a global average pooling followed
by a dropout at a rate of 0.1. Then, we employ a dense layer with ReLU acti-
vation of 64 hidden units and a dropout at a rate of 0.1. Finally, we use a dense
layer with sigmoid activation that outputs a value between 0 and 1, which is
interpreted as the “probability” of a trace belonging to positive (desirable) class.
We train the model for 50 epochs with ADAM optimizer [15], a learning rate of
1× 10−3, and batch size of 16.
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3.4 Results

Predictive Accuracy We report the experimental results for the binary clas-
sification task. Table 3 reports the AUROC scores of models on BPIC17, Traffic,
and COVID datasets, where there are some features leaking the label informa-
tion. Here the perfect score is achieved as the models correctly discover the
biased features, as expected. However, the Transformer model and the ML mod-
els with 1-gram on Traffic dataset do not achieve the perfect score on the
test set. This is due to the fact that the biased feature–‘Payment’–appears in
both of the classes. Therefore, 1-gram encoding is not capable of leaking the
information. The Transformer model also fails to discover the bias. On the other
hand, models achieve the expected results with the 2-gram and 3-gram encod-
ing because those encoding types explicitly define the biased feature: as <end>

token added to traces, the feature (Payment, <end>) in 2-gram and (Payment,

<end>, <PAD>) in 3-gram would leak the label information (positive class if last
event is ‘Payment’, negative class otherwise).

Table 3: AUROC scores on datasets with and without biased features using differ-
ent encoding methods and models. The values inside the parenthesis represent
the score on the hold-out test set, whereas others represent the score on the
training set.

with biased features without biased features

Dataset Encoding LR DT Transformer LR DT Transformer

BPIC17

integer - - 100.(100.) - - 97.3(97.3)
1-gram 100.(100.) 100.(100.) - 89.0(81.3) 89.5(76.0) -
2-gram 100.(100.) 100.(99.9) - 97.4(97.9) 97.3(93.5) -
3-gram 100.(100.) 99.9(99.8) - 97.4(97.8) 97.3(91.7) -

Traffic

integer - - 100.(98.4) - - 63.9(53.5)
1-gram 100.(93.3) 100.(92.2) - 61.5(36.8) 61.5(52.7) -
2-gram 100.(100.) 100.(100.) - 63.8(45.5) 63.9(49.8) -
3-gram 100.(100.) 100.(100.) - 63.8(48.1) 63.9(52.3) -

COVID

integer - - 90.9(100.) - - 74.8(94.2)
1-gram 100.(100.) 100.(100.) - 67.3(75.0) 69.6(68.3) -
2-gram 100.(100.) 99.9(100.) - 89.3(61.7) 85.4(85.0) -
3-gram 99.9(96.7) 98.1(66.7) - 90.4(48.3) 85.5(76.7) -

BPIC18

integer - - - - - 98.6(81.2)
1-gram - - - 97.5(77.9) 97.5(78.5) -
2-gram - - - 98.4(87.3) 98.2(84.5) -
3-gram - - - 98.4(87.3) 98.2(81.5) -

Hospital

integer - - - - - 92.4(78.7)
1-gram - - - 91.8(73.9) 92.3(56.2) -
2-gram - - - 92.5(70.5) 92.7(52.5) -
3-gram - - - 92.6(66.0) 92.6(48.5) -

Table 3 also reports the AUROC scores of models on all of the five real-life
event logs, where the biased features are removed from BPIC17, Traffic, and
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COVID datasets. For BPIC17 and COVID datasets the scores worsen but the re-
sults are still promising, hinting that the processes, sequences of events, maintain
valuable information for the task even though the distinct/biased features are re-
moved. The different amount of information in different encoding is mirrored by
the results: 1-gram achieves the worst results compared to 2-gram and 3-gram,
as it only incorporates single events, whereas 2-gram and 3-gram incorporates
event pairs. None of those methods integrate order information, while Trans-
former model learns this information during training. We observe that Trans-
former model successfully captures the relations between events as well as the
order information and outperforms other models in Traffic and COVID datasets,
whereas in BPIC17 it receives a comparable result. On the other hand, we ob-
serve that the scores for BPIC17 and COVID datasets do not fluctuate as much
as it does for Traffic dataset when compared to biased scores represented in
Table 3. This is due to the fact that after removing the biased feature in Traffic

dataset, some traces in both classes become identical.

12 10 8 6 4 2 0 2 4

A_Validating
O_Cancelled
A_Submitted

O_Sent (online only)
O_Sent (mail and online)

A_Cancelled
A_Denied

O_Returned
A_Create Application

A_Complete
<start>
<end>

O_Accepted
A_Concept

A_Accepted
O_Create Offer

A_Pending
O_Created

<pad>
O_Refused

Fig. 1: Relevance of features as considered by the logistic regression model. A high
positive/negative value indicates a considerable contribution towards predicting
the positive/negative label, i.e. desirable/undesirable event trace.

Feature Relevances We present the relevances of features taken into ac-
count by our trained logistic regression model in Figure 1. We find that
‘A Validating’ contributes the most towards predicting an undesirable trace,
whereas ‘O Refused’ contributes most to predict a desirable trace. Other events
have significantly lower impact on the predictions. Interestingly, the special to-
kens, i.e. <pad>, <start>, and <end> affect the predictions when they should
not, despite the fact that their influence is negligible. In addition, some features
have no effect on the predictions, e.g. ‘A Denied’, ‘A Cancelled’.

In Figure 2 we show the feature relevances that our trained decision tree
model considers. Based on the MDI value (left figure) the most relevant feature is
‘A Validating’, followed by ‘O Refused’, ‘A Submitted’, and ‘O Cancelled’ with
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0.0 0.2 0.4 0.6 0.8

A_Create Application
O_Accepted
A_Complete
A_Accepted
A_Concept

<end>
O_Sent (online only)

O_Sent (mail and online)
O_Created

O_Create Offer
<start>

A_Denied
A_Cancelled

<pad>
O_Returned

A_Pending
O_Cancelled
A_Submitted

O_Refused
A_Validating

0.0 0.1 0.2 0.3 0.4
O_Cancelled
A_Submitted

A_Pending
O_Returned
A_Cancelled

A_Create Application
O_Accepted
A_Complete

O_Sent (online only)
A_Concept

<end>
<start>

O_Sent (mail and online)
O_Created

O_Create Offer
A_Accepted

A_Denied
<pad>

O_Refused
A_Validating

Fig. 2: Relevance of features as considered by decision tree model. Left: Rel-
evances according to MDI: A high value indicates a considerable contribution
towards deciding between the positive and negative label. Right: Relevances ac-
cording to the permutation importance calculated on the test set, i.e. how much
shuffling a given feature negatively impacts the performance of the decision tree.

significantly lower impact. Based on the permutation feature importance (right
figure) the most relevant features are ‘A Validating’, and ‘O Refused’, where the
rest of the features have no effect on the prediction performance, which aligns
well with the relevances of LR model.

Figure 3 visualizes the attention scores of six attention heads for a given trace,
as well as normalized attention scores over all attention heads and test samples.
We observe that, regardless of where it appears in the trace, the events mostly
attend to ‘A Validating’ event for the aforementioned trace. In addition, some
events focus on ‘O Sent’ in some heads, which differs from the other models. The
normalized attention scores, however, demonstrates that not all traces exhibit
this behavior. The plot also highlights features whose importances overlap with
other models’ results. In summary, all models agree on the most relevant features.

4 Conclusion

We have demonstrated how to prepare process data in such a way that it can
be used to train classic and modern – state-of-the-art – ML classifiers. All our
trained models exhibit high classification performance, i.e. they are capable of
learning the underlying regularity of the observed processes, whereby Transform-
ers benefit from the fact that the full sequence information is available, unlike
e.g. 1-gram representations. XAI technologies prevent pitfalls such as informa-
tion leakage by explicit encoding of the predicted event, and reveal insights into
the relevance of events or sequences of events, respectively. These insights enable
a further exploration of crucial aspects of the processes, which is useful e.g. for
the improvement or correction of undesired process outcomes.

Future research could investigate the effects of various model architectures
and encoding schemes on the outcomes of feature relevances. Another potential
research direction might be to study the impact of adding further event attributes
on the learnt representations.
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0.00 0.05 0.10 0.15 0.20 0.25

<pad>
O_Create Offer

O_Sent (mail and online)
O_Cancelled

O_Created
O_Sent (online only)

O_Refused
A_Submitted
O_Returned

A_Create Application
A_Denied

O_Accepted
A_Concept

A_Accepted
A_Validating

A_Pending
A_Cancelled
A_Complete

Fig. 3: Left: Relevance of features as considered by transformer model for one
randomly selected event trace. The thickness of a line connecting two features
indicates the intensity of attention in between, whereas the color represents one
of the six different attention heads. Right: Normalized attention scores which
are averaged among all attention heads and all traces in test set.
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