Skip to main content

Explainable Artificial Intelligence for Improved Modeling of Processes

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2022 (IDEAL 2022)

Abstract

In modern business processes, the amount of data collected has increased substantially in recent years. Because this data can potentially yield valuable insights, automated knowledge extraction based on process mining has been proposed, among other techniques, to provide users with intuitive access to the information contained therein. At present, the majority of technologies aim to reconstruct explicit business process models. These are directly interpretable but limited concerning the integration of diverse and real-valued information sources. On the other hand, Machine Learning (ML) benefits from the vast amount of data available and can deal with high-dimensional sources, yet it has rarely been applied to being used in processes. In this contribution, we evaluate the capability of modern Transformer architectures as well as more classical ML technologies of modeling process regularities, as can be quantitatively evaluated by their prediction capability. In addition, we demonstrate the capability of attentional properties and feature relevance determination by highlighting features that are crucial to the processes’ predictive abilities. We demonstrate the efficacy of our approach using five benchmark datasets and show that the ML models are capable of predicting critical outcomes and that the attention mechanisms or XAI components offer new insights into the underlying processes.

This research was supported by the research training group “Dataninja” (Trustworthy AI for Seamless Problem Solving: Next Generation Intelligence Joins Robust Data Analysis) funded by the German federal state of North Rhine-Westphalia, and supported by the European Commission Horizon for ICU4COVID project, and the VW-Foundation for the project IMPACT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

    Article  Google Scholar 

  2. van der Aalst, W.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). https://doi.org/gjnmht

  3. Binder, A., Montavon, G., Bach, S., Müller, K., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. CoRR abs/1604.00825 (2016)

    Google Scholar 

  4. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

    Article  Google Scholar 

  5. Bukhsh, Z.A., Saeed, A., Dijkman, R.M.: ProcessTransformer: predictive business process monitoring with transformer network. CoRR (2021)

    Google Scholar 

  6. Dailey, D.: Netezza and IBM cloud PAK for data: a knockout combo for tough data. https://ibm.co/3xvK4MG. Accessed 17 June 2022

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  8. van Dongen, B.: BPI Challenge 2017 (2017). https://doi.org/jcmn

  9. van Dongen, B., Borchert, F.: BPI Challenge 2018 (2018). https://doi.org/jcmm

  10. Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. arXiv:2010.11929 (2020)

  11. Evermann, J., Rehse, J.R., Fettke, P.: Predicting process behaviour using deep learning. Decis. Support Syst. 100, 129–140 (2017)

    Article  Google Scholar 

  12. Fernández, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? JMLR 15(1), 3133–3181 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Harl, M., Weinzierl, S., Stierle, M., Matzner, M.: Explainable predictive business process monitoring using gated graph neural networks. J. Decis. Syst. 29(sup1), 312–327 (2020)

    Article  Google Scholar 

  14. Hsieh, C., Moreira, C., Ouyang, C.: Dice4el: interpreting process predictions using a milestone-aware counterfactual approach. In: ICPM, pp. 88–95. IEEE (2021)

    Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

  16. de Leoni, M.M., Mannhardt, F.: Road traffic fine management process (2015). https://doi.org/jcmk

  17. Louppe, G.: Understanding random forests: from theory to practice (2014). https://doi.org/jcms

  18. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes (2013)

    Google Scholar 

  19. Mannhardt, F.: Hospital Billing - Event Log (8 2017). https://doi.org/gm85w4

  20. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model using a deep learning method. Bus. Inf. Syst. Eng. 62(2), 143–157 (2020). https://doi.org/ggqt7z

  21. Molnar, C.: Interpretable Machine Learning, 2 edn(2022). https://www.lulu.com

  22. Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining, vol. 270, Springer, Heidelberg (2016). https://doi.org/jkmp

  23. Nguyen, A., et al.: Time matters: time-aware LSTMs for predictive business process monitoring. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP, vol. 406, pp. 112–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5_9

    Chapter  Google Scholar 

  24. Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: ICPM. IEEE (2019)

    Google Scholar 

  25. Pedregosa, F.: Scikit-learn: machine learning in python. JMLR 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Pegoraro, M., Narayana, M.B.S., Benevento, E., van der Aalst, W.M.P., Martin, L., Marx, G.: Analyzing medical data with process mining: a COVID-19 case study. In: Abramowicz, W., Auer, S., Stróżyna, M. (eds.) BIS 2021. LNBIP, vol. 444, pp. 39–44. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04216-4_4

    Chapter  Google Scholar 

  27. Rama-Maneiro, E., Vidal, J., Lama, M.: Deep learning for predictive business process monitoring: review and benchmark. IEEE Trans. Serv. Comput. (2021)

    Google Scholar 

  28. Ribeiro, M.T., Singh, S., Guestrin, C.: why should I trust you?: explaining the predictions of any classifier. In: ACM SIGKDD, pp. 1135–1144 (2016)

    Google Scholar 

  29. Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30

    Chapter  Google Scholar 

  30. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. 58(1), 267–288 (1996). http://doi.org/gfn45m

  31. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25

    Chapter  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  33. Weytjens, H., De Weerdt, J.: Creating unbiased public benchmark datasets with data leakage prevention for predictive process monitoring (2021). https://doi.org/jcmp

  34. Yasmin, F., Bukhsh, F., De Alencar Silva, P.: Process enhancement in process mining: a literature review. In: CEUR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riza Velioglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Velioglu, R., Göpfert, J.P., Artelt, A., Hammer, B. (2022). Explainable Artificial Intelligence for Improved Modeling of Processes. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21753-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21752-4

  • Online ISBN: 978-3-031-21753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics