Skip to main content

Effective Prevention of Semantic Drift in Continual Deep Learning

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2022 (IDEAL 2022)

Abstract

Lifelong machine learning or continual learning models attempt to learn incrementally by accumulating knowledge across a sequence of tasks. Therefore, these models learn better and faster. They are used in various intelligent systems that have to interact with humans or any dynamic environment. Dynamically expandable networks are continual deep learning models that allow its architecture to expand with a sequence of tasks. The model retains knowledge from the previous tasks that results in high performance on newer tasks. The existing models use Minkowski distance measures to separate nodes of the current network, resulting in higher catastrophic forgetting. These measures are susceptible to high dimensional sparse vectors, resulting in sub-optimum performance. We propose ang-DEN, as a dynamically expanding continual learning architecture that use angular distance metric. It addresses semantic drift through better separation of nodes achieving 97% average accuracy with an improvement of 1.3% across all tasks on MNIST variant datasets.

K. Saadi—Independent Researcher.

This work was supported by Fatima Al-Fihri predoctoral fellowship program (https://fatimafellowship.com/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27

    Chapter  Google Scholar 

  2. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  3. Chen, Z., Liu, B.: Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 12(3), 1–207 (2018)

    Google Scholar 

  4. d’Autume, C.d.M., Ruder, S., Kong, L., Yogatama, D.: Episodic memory in lifelong language learning. arXiv preprint arXiv:1906.01076 (2019)

  5. Fernando, C., et al.: PathNet: evolution channels gradient descent in super neural networks. arXiv preprint arXiv:1701.08734 (2017)

  6. Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D., Pérez-Sánchez, B., Peteiro-Barral, D.: Online machine learning. In: Efficiency and Scalability Methods for Computational Intellect, pp. 27–54. IGI Global (2013)

    Google Scholar 

  7. Khan, M.T., Azam, N., Khalid, S., Yao, J.: A three-way approach for learning rules in automatic knowledge-based topic models. Int. J. Approx. Reason. 82, 210–226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khan, M.T., Durrani, M., Khalid, S., Aziz, F.: Online knowledge-based model for big data topic extraction. In: Computational Intelligence and Neuroscience 2016 (2016)

    Google Scholar 

  9. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. LeCun, Y., Cortes, C., Burges, C.: MNIST Handwritten Digit Database, vol. 2. ATT Labs (2010). http://yann.lecun.com/exdb/mnist

  11. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In: International Conference on Machine Learning, pp. 3925–3934. PMLR (2019)

    Google Scholar 

  12. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  13. Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A.M., Bagdanov, A.D.: Rotate your networks: better weight consolidation and less catastrophic forgetting. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268. IEEE (2018)

    Google Scholar 

  14. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. Adv. Neural. Inf. Process. Syst. 30, 6467–6476 (2017)

    Google Scholar 

  15. Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: A review. Neural Netw. 113, 54–71 (2019)

    Article  Google Scholar 

  16. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  17. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671 (2016)

  18. Wu, Y., et al.: Large scale incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 374–382 (2019)

    Google Scholar 

  19. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547 (2017)

  20. Zhang, J., Zhang, J., Ghosh, S., Li, D., Zhu, J., Zhang, H., Wang, Y.: Regularize, expand and compress: nonexpansive continual learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 854–862 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taimoor Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadi, K., Taimoor Khan, M. (2022). Effective Prevention of Semantic Drift in Continual Deep Learning. In: Yin, H., Camacho, D., Tino, P. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2022. IDEAL 2022. Lecture Notes in Computer Science, vol 13756. Springer, Cham. https://doi.org/10.1007/978-3-031-21753-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21753-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21752-4

  • Online ISBN: 978-3-031-21753-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics