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Abstract. When semantically describing knowledge graphs (KGs), users
have to make a critical choice of a vocabulary (i.e. predicates and re-
sources). The success of KG building is determined by the convergence
of shared vocabularies so that meaning can be established. The typical
lifecycle for a new KG construction can be defined as follows: nascent
phases of graph construction experience terminology divergence, while
later phases of graph construction experience terminology convergence
and reuse. In this paper, we describe our approach tailoring two AI-
based clustering algorithms for recommending predicates (in RDF state-
ments) about resources in the Open Research Knowledge Graph (ORKG)
https://orkg.org/. Such a service to recommend existing predicates to
semantify new incoming data of scholarly publications is of paramount
importance for fostering terminology convergence in the ORKG.
Our experiments show very promising results: a high precision with rela-
tively high recall in linear runtime performance. Furthermore, this work
offers novel insights into the predicate groups that automatically accrue
loosely as generic semantification patterns for semantification of schol-
arly knowledge spanning 44 research fields.

Keywords: Content-based recommender systems · Open research knowl-
edge graph · Artificial Intelligence · Clustering algorithms.

1 Introduction

Traditional, discourse-based scholarly communication in “pseudo-digitized” PDF
format is being now increasingly transformed to a completely new representa-
tion leveraging semantified digital-born formats e.g. within the Open Research
Knowledge Graph (ORKG) [7] among other initiatives [3,8,11,19,26,35,50]. This
“digital-first” scholarly information representation is based on a fundamentally
new information organization paradigm that creates and uses structured, fine-
grained scholarly content. Specifically, in the ORKG, scholarly communication
is based on a large, interconnected knowledge graph (KG) of fine-grained schol-
arly content. Such an information organization paradigm facilitates the evolution
of scholarly communication from documents for humans to read towards human
and machine-readable knowledge with the aim of alleviating human reading cog-
nitive tie-ups. To this end, the ORKG-based scholarly communication comprises
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a crucial machine-actionable unit of scholarly content in the form of human and
machine-readable comparisons of semantified scholarly contributions [44]. These
comparisons are meant to be used by researchers to quickly get familiar with
existing work in a specific research domain. For example, determining the repro-
duction number estimate R0 of the Sars-Cov-2 virus from a number of studies
in various regions across the world https://orkg.org/comparison/R44930. The
semantically represented scholarly contribution comparisons in ORKG are espe-
cially necessary in our era of the deluge of peer-reviewed publications [29] and
preprints [18] to help researchers stay on top of the fast-paced scientific progress.
It concretely helps scientists to still keep an oversight over scientific progress by
freeing unnecessary human cognitive tie-ups involved when searching for key
information buried in large volumes of text.

The ORKG machine-readable comparisons depend on the availability of a
knowledge base of machine-actionable, semantified scholarly contributions. The
scholarly contributions are a unit of information defined in the context of the
ORKG that describe the addressed problem and comprise the utilized materials,
employed methods and yielded results in a scholarly article – a model which sub-
sumes Leaderboards [27,31]. A large community of researchers has recently
been growing around the crowdsourced curation of scholarly contributions in
the ORKG (e.g., https://orkg.org/paper/R163747).1 To describe the scholarly
contributions, RDF statements are used as structured semantic units that are
machine-actionable as a result. A core semantic construct of these contribution-
centric statements are the predicates or properties used to describe the contri-
bution of an article. While the subject and object are content-based, predicates
can generically span contributions across articles. E.g., task name, dataset name,
metric, and score are a group of four predicates used to semantically describe
the leaderboard contribution across AI articles [31] in the Computer Science
domain; the predicates basic reproduction number, confidence interval (95%),
location, and time period are used to describe Covid-19 reproductive number
estimates in epidemiology articles [43].

Predicates are a core construct for semantically describing contributions in
ORKG. To base the ORKG on meaningfully described semantic scholarly contri-
butions, certain, specific groups of predicates that can capture key contribution
aspects of the scholarly articles are essential. Each such group then becomes a
contribution-centric predicate group. Further, the group varies in applicability
from being applicable to only a specific scholarly contribution or generalizing
across a group of contributions from different papers. In this respect, the ORKG
follows an agile, iterative Wiki-style collaboration approach giving curators the
autonomy to coin new properties easily, but aims in the long-term trajectory
to be coherent in terms of vocabulary for both predicates and resources. Note
that contributions can only be compared based on standard predicates terminol-
ogy for the machine-readable ORKG comparisons. Further, the typical lifecycle
of a new KG construction must also be accounted which starts with nascent

1The related construct to ORKG contributions, of Leaderboards in AI https:
//paperswithcode.com/ has also garnered large-scale crowdsourcing interest.

https://orkg.org/comparison/R44930
https://orkg.org/paper/R163747
https://paperswithcode.com/
https://paperswithcode.com/
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phases of graph construction experiencing terminology divergence, while later
phases of graph construction aim at terminology convergence and reuse. In this
background setting of building the ORKG, the overarching research question
investigated in this paper is: How to ensure that individuals, free to use arbi-
trary terminology, converge towards shared vocabularies for contribution-centric
semantic predicates?

Allowing users to make arbitrary statements is important, since it ensures
that the expression of the diverse discoveries in Science are not being lost or un-
represented due to restricted semantic vocabularies. However, some authoring
considerations need to be made. Without further considerations, the authoring
freedom of contributions in the ORKG would result in statements with different
vocabularies, defying the purpose of the need to semantify contributions. A ter-
minology policy could be enforced but that would highly restrict users. Instead, a
suggestion mechanism, recommending terminology based on the dataset, would
help converge terminology without forcing users, as demonstrated in collabora-
tive tagging [34,37]. In collaborative data entry, participants construct a dataset
by continuously and independently adding further statements to existing data.
Each curation participant faces the question: Which vocabulary elements to use?
To ensure convergence, the answer is: use the most relevant and frequently oc-
curring vocabulary elements. Finding the most frequent vocabulary elements is
straightforward: one can simply count the occurrences. We therefore focus on
finding the relevant vocabulary elements. Science comprises very heterogeneous
contributions. Finding the vocabulary that is relevant for one contribution there-
fore means: finding similar contributions and reuse their vocabulary.

To this end, this work describes our implementation of an unsupervised
AI service based on clustering similar papers and recommending contribution-
centric predicate groups from the existing ORKG contributions. Similar schol-
arly contributions should be semantified with a homogeneous contribution-centric
semantic predicate groups. This is our intuition behind adopting clustering since
the method aims to group the data points having similar features, where data
points in different groups should have highly offbeat features. We chose hierar-
chical (Agglomerative1) and non-hierarchical (K-means2) clustering strategies.
We avoid computationally intensive methods (e.g., Affinity) or methods that can
handle only small cluster sizes (e.g., Spectral clustering).

In summary, the contributions of our work are:

1. a formalization of the application of homogeneous related groups of predi-
cates to semantically describe scholarly contributions;

2. the evaluation of two contrasting flavors of clustering objectives (hierarchi-
cal and non-hierarchical) to semantify contributions based on contribution-
centric predicate groups. Since the task itself is formalized for the first time
in this work, the application of an AI approach is correspondingly novel;

3. detailed empirical evaluations of four machine learning model variants re-
sulting from testing two different embedding representations; and

1https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
2https://scikit-learn.org/stable/modules/clustering.html#k-means

https://scikit-learn.org/stable/modules/clustering.html#hierarchical-clustering
https://scikit-learn.org/stable/modules/clustering.html#k-means
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4. the demonstration of a predicates recommendation service for the ORKG
scholarly knowledge digitalization platform. Its objectives are two-fold: i)
expedite adding a new contribution to the graph, and ii) semantify the con-
tributions with a shared vocabulary. The recommender service takes as input
a paper’s title and abstract and in turn recommends a group of semantically
related predicates based on earlier similar semantified papers if found by the
clustering method, otherwise an empty set of predicates is returned. Such a
system is described for the first time.

The remainder of the paper is organized as follows. We first define the core
concepts relevant to this work but which may be new in the community in Section
2. We then offer the formalized definition for our contributions-centric predicates
grouping task in Section 3, following which, in Section 4, we explain the custom
dataset created from the ORKG RDF data dump incorporating our novel task.
Next, we introduce our method for the contribution-centric predicates group
recommendation service in Section 5. We then show the experimental results
from our methods on our created custom task corpus in Section 6. Finally, we
conclude with discussions on the possibility of further improvement and future
work in Section 7.

2 Definitions

We first define the central concepts to the task attempted in this work.

Contribution. Highlights the findings of a research endeavour. An ORKG con-
tribution addresses a research problem, and can be described in terms of the
materials and methods used and the results achieved. Contributions in different
papers addressing the same research problem can be expected to have compa-
rable semantic descriptions at least for their key properties whose values, i.e.
resources and literals, then are specific to the research endeavour.

Contribution Triple. Contributions are semantically described in a series of
(subject, predicate, object) RDF triple statements that build the ORKG.

Contribution Predicates’ Set (cps). Is a set of predicates in contribution triples.

Comparison. The ORKG supports downstream smart applications such as the
creation of comparisons/surveys over its structured contributions. In other words,
given the ORKG structured contributions, it is possible to compare the values
of several such machine-actionable contributions provided their cpss are more
or less similar. Comparisons can either be generated over several contributions
of a single article (e.g., comparison of an AI benchmark characteristics hav-
ing similar cpss but differing values over the different data domains annotated
https://orkg.org/comparison/R163843/); or over contributions with similar cpss
in different articles (e.g., comparison of the Covid-19 reproductive number (R0)
estimate set of studies, respectively, conducted by different research groups for
different countries https://orkg.org/comparison/R44930/).

https://orkg.org/comparison/R163843/
https://orkg.org/comparison/R44930/
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Contribution Template. An ORKG template is a set of predicates manually
specified by a domain expert to describe contributions over a specific research
problem. It helps standardize the process in ORKG of semantifying contributions
with similar properties but different values. E.g., the leaderboard template https:
//orkg.org/template/R107801.

Contribution Predicates’ Group (cpg). A cpg is similar to a template. Where
in templates, the predicates’ groups are manually created by a domain expert, in
the case of cpgs, they are heuristically obtained from several similar cpss. E.g.,
since in the process of obtaining the crowdsourced contributions in ORKG, it
may surface that some cpss have been used similarly and repeatedly (say, above
a designated threshold of contributions) to structure new contributions, they are
then designated as a cpg. cpgs are indeed potential candidate templates.

The goal of this work is to recommend cpgs discovered from cpss for de-
scribing new contributions, thereby offering ORKG users intelligent assistance
in the process of structuring the new contributions. In the next section, we offer
our actual task definition.

3 Task Definition

As mentioned above, the task addressed in this paper deals with discovering
cpgs from cpss in the ORKG knowledge base (KB) to describe a new article’s
contribution. At a high-level, given an article and the ORKG KB of crowd-
sourced, structured contributions w.r.t. their cpss, the most relevant cpg, if
found, should be recommended for describing the new article contribution.

Our task formalism is as follows. The ORKG KB comprising structured con-
tributions defined only w.r.t. predicates is CPS = {cps1, ...,cpsN} which were
used to structure contributions in the set C = {c1, ..., cN}, respectively. Here,
the base N represents the total number of contributions in the ORKG, CPS
is the knowledge base of predicates sets, and cpsi is the predicates set used to
structure contribution ci. Furthermore, the set of predicates in each cps for-
mally is, cpsi = {p1i, p2i, ..., pxi}. Finally, P = {p1, p2, ..., py} represents the set
of unique predicates aggregated from all cpss and y is the total number of unique
predicates used to structure the knowledge about contributions in ORKG. The
recommendation task attempted in this work can then be defined as, given a new
paper P as its title T and abstract A, to semantify or describe its contribution
C with an automatically discovered cpg from the ORKG KB of cpss such that
the predicates in cpg ∈ P .

4 Task Dataset

For our novel task as defined above in section 3, a novel dataset needed to be
created. Our raw data source was the ORKG RDF data dump https://orkg.org/
orkg/api/rdf/dump dated 2021-11-10. Our objective with creating the dataset

https://orkg.org/template/R107801
https://orkg.org/template/R107801
https://orkg.org/orkg/api/rdf/dump
https://orkg.org/orkg/api/rdf/dump
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is to capture instances of the constructs of cpgs and cpss with their respec-
tive scholarly articles’ title T and abstract A. Instantiated cpgs in a dataset
can serve two purposes: 1) a supervision signal for machine learning if building
a supervised recommendation system; and 2) as gold-standard data to evaluate
system automatic recommendations. While obtaining cpss and their correspond-
ing articles may be a relatively straightforward process – for cpss, we query the
ORKG RDF data dump of contributions and for articles’ T and A, we query
external services like Crossref – the process of obtaining cpgs is not.

Recall in section 2, our definition of ORKG Comparisons. Briefly, they are a
downstream application enabling computing surveys over collections of machine-
actionable, structured contributions with roughly similar cpss. Given this and
our need to obtain cpgs heuristically, we ask ourselves: could the cpss aggre-
gated in Comparisons be considered a cpg? The answer is “yes,” but with a
caveat. We cannot consider the aggregated cpss as cpgs from just about any
Comparison. We want to generate cpgs that are strong candidates for templates.
For this, we deem that the candidate cpss need to demonstrate a strong rep-
etition pattern of structuring several contributions as a determiner that they
would apply to new contributions that have not yet been structured as well.
Note here the connection between our heuristic and templates is that templates
are defined with the intention of standardizing the process of structuring simi-
lar contributions on the same research problem across papers where they occur.
Thus we concretely implement our heuristic as follows to generate cpgs for our
dataset. The aggregated cpss in Comparisons containing at least 10 contribu-
tions were considered as cpgs in our task dataset. To offer the reader better
insights to the kind of Comparisons that were finally considered, we show in Ta-
ble 1 some comparisons from whose aggregated cpss, cpgs could be obtained.
These Comparisons include between 10 to at most 55 structured contributions.
Since structured contributions in ORKG can span Science at large, the compar-
isons shown in Table 1 have a diverse coverage of research fields: 1 is from the
Information Science, 2 belongs to Semantic Web, 3 belongs to Bioinformatics,
4 is from Urban Studies and Planning, 5 is from Software Engineering, and 6
belongs to Natural Language Processing.

Finally, our task dataset contains a set of structured contributions as cpss
with their paper title T and abstract A. Further, these structured contributions
only pertain to those from which cpgs could be obtained heuristically from
Comparisons with the contribution included. The cpgs are also mappings to
the original paper they roughly structure.

Dataset Statistics. We now offer the reader some concrete statistical insights
into our task dataset. Table 2 shows the total unique papers, contributions,
predicates and their research fields’ coverage. The minimum, maximum, and av-
erage numbers are aggregated by the selected Comparisons from which cpgs
could be obtained. Thus our task dataset includes 3941 papers and 1681 unique
predicates. The selected Comparisons have included 23.25 papers on average,
with a minimum of 2 and maximum of 202. Further, contributions were struc-
tured by as few as 2 predicates and as many as 112 predicates at an average
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Table 1. Example ORKG Comparisons, which are aggregations of collections of struc-
tured contributions, and correspondingly some contribution predicates in their respec-
tive contribution predicates’ groups (cpg).

Comparison title Predicates in contribution predicate groups

1. Design and implementation of epi-
demiological surveillance systems
https://orkg.org/comparison/
R146851

epidemiological surveillance approach, epidemio-
logical surveillance architecture, epidemiological
surveillance software, epidemiological surveillance
users, statistical analysis techniques

2. Ontology learning from
Folkosonomies https://orkg.
org/comparison/R144121

learning method, and binary valued properties
as: terms learning, concepts learning, individual
learning, axioms learning

3. Review of the existing research ap-
plying Deep Learning related to
mental health conditions https://
orkg.org/comparison/R139050

study cohort, used models, data, outcomes, out-
come assessment method, performance

4. Enterprise architecture applications
for managing digital transforma-
tion of smart cities https://orkg.
org/comparison/R146458

has methodology, issues addressed, study purpose,
technology deployed

5. Overview of Approaches
that Classify User Feedback
as Feature Request https:
//orkg.org/comparison/R112387

tf-idf precision, tf-idf recall, tf-idf f1, bag-of-words
precision, bag-of-words recall, bag-of-words f1

6. NLP Datasets for Scientific Con-
cept and Relation Extraction https:
//orkg.org/comparison/R150058

data domains, data coverage, dataset name, con-
cept types, relation types, number of concepts,
number of relations

Table 2. A tabular view of our task dataset statistics where the information in columns
expressed w.r.t. the ORKG Comparisons that were considered for the dataset.

- Papers Contributions Predicates Research Fields

Minimum per Comparison 2 10 2 1

Maximum per Comparison 202 250 112 5

Average per Comparison 23.25 35.47 12.86 1.19

Total 3941 5123 1681 44

rate of 12.86. Our corpus covers contributions from across 44 different research
fields. Figure 1 depicts the trendline patterns of the distribution of contribu-
tions in ORKG Comparisons and the distribution of predicates to structure the
contributions. We see they are respectively a long-tailed distribution, i.e. some
comparisons are outliers in our dataset and include a large number of contri-
butions, and on the other hand, some predicates are used most frequently to
structure nearly most of the contributions. Our task dataset is publicly available
at https://doi.org/10.5281/zenodo.6513499.

https://orkg.org/comparison/R146851
https://orkg.org/comparison/R146851
https://orkg.org/comparison/R144121
https://orkg.org/comparison/R144121
https://orkg.org/comparison/R139050
https://orkg.org/comparison/R139050
https://orkg.org/comparison/R146458
https://orkg.org/comparison/R146458
https://orkg.org/comparison/R112387
https://orkg.org/comparison/R112387
https://orkg.org/comparison/R150058
https://orkg.org/comparison/R150058
https://doi.org/10.5281/zenodo.6513499
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Fig. 1. Distribution of contributions in ORKG Comparisons in our task dataset (left)
shown as a trendline. And the distribution of contributions over individual predicates
in our task dataset shown as a trendline (right). This latter figure, in other words,
shows the predicate repetition pattern for structuring contributions.

5 Background and Related Work

The Semantic Web [48] was first introduced as an extension to the World Wide
Web as a comprehensive framework to create meaningful (semantic) description
of information on the web as subject-predicate-object triples logical equivalent of
unstructured text. Different Semantic Web languages (such as RDF, RDFS and
OWL) were introduced and are now widely used standards to create structured
data for intelligent computational agents [25].

Over the past decade, scholarly knowledge has started gaining traction for
representation in machine-interpretable form leveraging Semantic Web stan-
dards. In other words, to semantically describe research knowledge gained among
researchers from around the world. To this end, various initiatives are focused on
constructing Knowledge Graphs (KGs) over different aspects of scholarly knowl-
edge. One line of work concerns metadata-interlinking (e.g. authors, citations or
keywords) [24,51,1,33]. Another line of work [4,9,36] supports the construction
of KGs based on interlinking of research artifacts (e.g. source code, datasets or
figures). In contrast, the ORKG [7] aims for contribution-centric interlinking of
research resources.

Constructing a KG remains a challenge, in general, w.r.t. ensuring the graph
quality and graph knowledge completeness. Four main groups of construction
methods were classified by [41] as i) expert-based manual curation [32,38,13], ii)
open community-based manual collaborative curation [14,49], iii) automated
semi-structured approaches involving information extraction from structured
tabulated data or using rule-based systems [6,14], and iv) automated unstruc-
tured approaches using machine learning to mine text [21,40,39,42,17]. In fact,
the ORKG reflects all four of the information curation approaches. For instance,
the creation of ORKG templates by domain experts as reusable graph patterns
is an expert-based manual curation approach; the crowdsourcing of research con-
tributions in the ORKG is a community-based collaborative approach [34,37]. As
automated semi-structured methods, often rule-based approaches are also exper-
imented with in the context of the ORKG, such as the system to acquire scientific
entities from scholarly article titles [22]. Finally, the ORKG’s fully automated
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text mining include the Leaderboard extraction system [30] and Computer Sci-
ence Named Entity Recognition [23].

The predicates recommendation system described in this paper would then
be a service offered for community-based curation of the ORKG to ensure rep-
etition of the contribution graph patterns toward terminology convergence and
comparability of the structured descriptions. Relatedly then, in terms of ap-
proaches, [45] introduced two simple algorithms. One based on generic similarity
metrics [15,20], containment and resemblance, used to classify predicates similar
to the query resource as a ranked list. And another approach based on comput-
ing co-occurrence matrix of predicates of resources. Despite the linear runtime
performance of the algorithms, they rely on a structured query resource, while
we are in need of a predicate suggestion service based on unstructured texts. To
this end, [2] offered a clustering methodology using K-means [28] to semantify
descriptions of Biological Assays. Our approach is modelled after this system.
Finally, while at first glance, topic modeling [12] may seem similar to a clustering
method, we observe that topic modeling would help us obtain distribution of a
paper over topics, whereas our objective is instead to assign a paper to a single
semantic group informed by its contribution, which we achieve via clustering
where each paper is assigned to only a single cluster. Nevertheless, to ensure
experimental completeness, we show results from a topic modeling baseline.

6 Our Approach

6.1 Clustering of Contribution Predicates’ Groups

Earlier in the task dataset section (section 4), we first described our heuris-
tic reliance on ORKG Comparisons to obtain cpgs. The next question is: how
can we develop a recommender of cpgs given a corpus of papers as their titles
T and abstracts A structured for their contributions with cpss? We propose
an AI-based unsupervised clustering strategy of papers as the solution. With
this approach, we aim to automatically obtain cpgs by aggregating all cpss in
a particular cluster of similar papers. Our hypothesis is that papers describing
similar contributions are also similar to each other in terms of their unstructured
text descriptions as T and A. Thus, the role played by the construct of Com-
parisons in generating cpgs are now replaced, in the context of an automated
recommender, by a clustering algorithm.

6.2 Grouped Predicates Recommender System Workflow

Our automated recommender system workflow with clustering is as follows.

1. A user provides the paper’s title and/or DOI they wish to add.
2. We fetch the paper’s abstract from external service APIs as discussed in the

dataset section (section 4).
3. The paper’s title and abstract are concatenated and vectorized.
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4. The vector representation will be fed to a pre-trained clustering model
for most relevant cluster prediction. Note, each candidate cluster was con-
structed based on prior semantified papers already in the ORKG KB.

5. We fetch the predicates, i.e. cpss, of all the structured paper contributions
in the predicted cluster.

6. All cpss are combined to a set to produce a cpg which is then recommded
to the user for their query paper.

This workflow is illustrated in Figure 2 below.

Fig. 2. Our grouped predicates recommender workflow. Arrows indicate the data flow.

For the vectorizer module, we experimented with two different vectorization
functions. And, for the clustering model, we tried two different clustering algo-
rithms. These experimental details are provided next.

6.3 Vectorization Functions

We rely on two vectorization methods. 1) TF-IDF - vectors are directly computed
from our task corpus. 2) SciBERT [10] - vectors are computed from a pretrained
model of embeddings over large-scale publications’ data.

TF-IDF embeddings - We use the scikit-learn [16,46] library to convert our
corpus of paper T and A into TF-IDF [47] vectors. TF-IDF vectors are n-
dimensional real-valued vectors representing a given text with the term frequency-
inverse document frequency (TF-IDF) value for each possible term in the corpus.
260, 016 unique terms were found in our corpus.

SciBERT embeddings - We feed forward the pre-trained AllenNLP SciBERT [10]
uncased model with our text corpus of paper T and A to output its final hidden
state, which is then averaged via sentence transformers (https://huggingface.
co/sentence-transformers) resulting in a vectorized text of dimension 768. We
obtain the embeddings using a max sequence length of 512.

https://huggingface.co/sentence-transformers
https://huggingface.co/sentence-transformers
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6.4 Clustering Algorithms

We rely on two complementary variants of clustering methods: one based on non-
hierarchical clustering, specifically K-means; and another based on a hierarchical
clustering, specifically agglomerative clustering.

K-means. Following [2], we apply the centroid-based clustering algorithm K-
means [28] to group similar scholarly contributions represented by their pa-
per T and A. The scikit-learn implementation (https://scikit-learn.org/stable/
modules/generated/sklearn.cluster.KMeans.html) was leveraged and the models
were trained on the Google Colab Pro+ platform due to the complex time and
space requirements of K-means.

Agglomerative. The agglomerative bottom-up hierarchical-based clustering
algorithm [52] with ward linkage was applied. This method, like the K-means ob-
jective function, minimizes the variance within a cluster. Again, the scikit-learn
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.
html) implementation was used and the models were trained on Google Colab.

6.5 Experimental Setup

In this section, we describe our experimental setup to find the optimal vector-
ization method and clustering algorithm combination.

Dataset. First, we created training and test dataset splits of our task corpus.
From each comparison, we split its papers in the 70:30 ratio for creating training
and test datasets, respectively. The test dataset was reserved as a blind set with
which the trained algorithm was queried for its predictions of clustered predicate
groups. In total, our training set consisted of 3,696 contributions distributed over
192 comparisons, whereas our test set had 1,427 contributions distributed over
167 comparisons. The training and test sets contain mutually unique instances.

Evaluation Metrics. Per the standard evaluation practice of information retrieval
systems, we employed the macro- as well as the micro-average [5] of the precision
(P ), recall (R) and F-score (F1).

Selecting K. K was strategically chose in the range |C| ≤ k ≤ |P | with a step
size of 50, where C = 200 is the set of ORKG comparisons and P = 2050 is the
set of training papers. 38 total models were obtained per vectorization method.

Predictions. Some considerations need to be taken w.r.t. evaluating our cluster-
ing models. We put emphasis on the absence of the prediction function in the
agglomerative algorithm compared to its presence in K-means that can simply
assign a new incoming data instance to one of the clusters based on the dis-
tance to the centroid. In hierarchical clustering on the other hand, assigning a
new data instance can entirely change the clusters because it can trigger several

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
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mergings based on the linkage measure. In order to avoid re-building the hier-
archical clusters for each test instance, we build them only once on the entire
dataset and evaluate by comparing the comparisons’ predicates of the train-
ing papers included in the cluster to which a test instance is assigned with the
expected ones.

7 Results and Discussion

In this section, we discuss our experimental results for selecting the optimal
vectorization and clustering model pair.

7.1 Quantitative Evaluations

Baselines. We implemented two baselines each driven by a research question
(RQ). Baseline 1 RQ : what happens if the problem were reduced to a trivial
solution where clusters of contributions are created simply based on the research
field? For this baseline, the contribution cpss in our training data were grouped
to form a cpg per research field of the training data contributions. The 44
different research fields in our dataset thus resulted in 44 cpgs. Thus a new
incoming paper from the test dataset would be assigned the cpg of its research
field created from the training dataset contributions. Row 1 in Table 5 shows the
results from this baseline. We find that while a perfect recall can be obtained,
such an approach is not precise. This reveals an important characteristic of our
dataset: i.e., the structure of contributions within each research field can differ
significantly across papers in the same field. Baseline 2 RQ : what happens
when 192 topics are generated from our dataset by topic modeling [12] analogous
to the 192 comparisons? To implement this baseline, topic distributions were
obtained for all papers in the training dataset and each paper was assigned to the
best topic. Thus cpss were obtained per topic from which cpgs were generated.
A new incoming test paper was then classified to best topic and assigned its
cpg. Row 2 in Table 5 shows the results from a topic modeling based approach.
The results prove to not be promising in terms of both precision and recall. This
is contrary to our initial assumption that topic groups could be a correlated
semantic construct of comparisons. We find no correlation can be established.

Clustering Results. Tables 3 and 4 show the results from applying K-means
and Agglomerative clustering, respectively, with both tables showing results of
the two vectorization methods. The best results are highlighted as bold and
underlined in the respective tables.

The evaluation results point out that each clustering method prefers a dif-
ferent vectorization strategy. The K-means clustering algorithm (see Table 3)
show that SciBERT embeddings are the preferred vectorization method obtain-
ing 0.726 micro F1 and 0.781 macro F1 (k = 2050). The Agglomerative clustering
algorithm (see Table 4) show that TF-IDF embeddings is the preferred vector-
ization method obtaining 0.804 micro F1 and 0.834 macro F1 (k = 1300). Thus,
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Table 3. Results of automatically generating contribution predicates groups using K-
Means clustering. K was chosen in the range from 200 to 2050 in step sizes of 50. The
table shows the most significant results obtained in terms of P , R, and F1.

- Macro-Average Micro-Average

- TF-IDF SciBERT TF-IDF SciBERT

Clusters
K P R F1 P R F1 P R F1 P R F1

200 0.344 0.957 0.506 0.380 0.921 0.538 0.057 0.953 0.108 0.242 0.913 0.383

350 0.453 0.917 0.607 0.466 0.924 0.620 0.272 0.906 0.419 0.320 0.919 0.475

1100 0.632 0.868 0.731 0.625 0.881 0.731 0.447 0.838 0.583 0.480 0.886 0.623

1650 0.650 0.821 0.726 0.681 0.855 0.758 0.535 0.799 0.641 0.588 0.832 0.689

1850 0.649 0.779 0.708 0.704 0.849 0.770 0.593 0.732 0.655 0.603 0.834 0.700

2050 0.609 0.748 0.672 0.728 0.844 0.781 0.486 0.696 0.572 0.659 0.808 0.726

Table 4. Results of automatically generating contributions predicates groups using
Agglomerative clustering. K was chosen in the range from 200 to 2050 in step sizes of
50. The table shows the most significant results obtained in terms of P , R, and F1.

- Macro-Average Micro-Average

- TF-IDF SciBERT TF-IDF SciBERT

Clusters
K P R F1 P R F1 P R F1 P R F1

200 0.521 0.970 0.678 0.309 0.031 0.056 0.160 0.979 0.275 0.198 0.032 0.055

250 0.550 0.967 0.701 0.354 0.031 0.057 0.189 0.977 0.317 0.265 0.032 0.057

350 0.592 0.955 0.731 0.390 0.030 0.056 0.239 0.964 0.383 0.312 0.032 0.058

1100 0.811 0.869 0.839 0.621 0.022 0.042 0.736 0.875 0.799 0.648 0.023 0.045

1300 0.823 0.845 0.834 0.751 0.021 0.041 0.760 0.853 0.804 0.761 0.023 0.044

1950 0.869 0.743 0.801 0.823 0.013 0.026 0.830 0.735 0.779 0.828 0.012 0.024

2000 0.874 0.733 0.797 0.823 0.013 0.026 0.835 0.727 0.777 0.828 0.012 0.024

Table 5. Overall results - Comparison between BaseRF (Baseline Research Fields),
BaseLDA (Baseline Latent Dirichlet Allocation), K-Means and Agglomerative.

- Macro-Average Micro-Average

Approach P R F1 P R F1

BaseRF 0.186 1.0 0.250 0.028 1.0 0.055

BaseLDA 0.040 0.662 0.090 0.023 0.615 0.046

K-Means 0.728 0.844 0.781 0.659 0.808 0.726

Agglomerative 0.823 0.845 0.834 0.760 0.853 0.804

Agglomerative clustering surpasses K-means by nearly 10 points. While macro
scores are evaluations at the Comparisons level, micro scores report evaluations
at a more fine-grained predicates level. Based on this, our optimal model is at
k = 1300 with the highest micro F1 using TF-IDF vectorization and Agglomer-
ative clustering.
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7.2 Qualitative Evaluations

We qualitatively analyze the ability of our system to regenerate ORKG Com-
parisons via clustering. In other words, are the contributions in ORKG Com-
parisons, even if contained in different clusters, distributed over pure or impure
clusters? A pure cluster is one that contains contributions from only a single
Comparison; an impure cluster is one that contains contributions from multiple
Comparisons. We define this measure for regenerating the ORKG comparisons
automatically as follows.

ReGen(comp) =
|{c ∈ C | c groups papers only from comp}|

|C|
(1)

We pick a representative example in our qualitative analysis. The ReGen
value for “Smart cities and cultural heritage” ORKG Comparison which has 4
contributions originally (https://www.orkg.org/orkg/comparison/R140131/) is
50%. As a result of our method, this Comparison spanned 4 clusters (2 pure and
2 impure). However, observing the impure clusters closely, we noted that they
included contributions from other Comparisons (e.g., “Smart city governance
research categories analysis by references articles” or “Enterprise architecture
applications for managing digital transformation of smart cities”, etc.) which
were on the same research theme of “Smart Cities” and therefore had more or
less very similar predicates. Thus, having not perfectly regenerable Comparisons
by our method does not necessarily imply inaccurate predicted clusters. But this
finding points to the fact that ORKG Comparisons are not all necessarily too
semantically distinct from each other.

8 Conclusion and Future Work

Our experiments on the hierarchical Agglomerative algorithm have shown a
quantitative result of 80.4% F1 and a qualitative result of similar recommen-
dations of comparison predicates to those predefined in ORKG templates. Thus,
the content-based recommender system based on clustered predicate units satis-
fies the templating concept of the ORKG. Overall, we offer among our method-
ology a semantification system for research contributions in the Semantic Web
that does not limit the user autonomy, but instead directs the user to choose
from an existing vocabulary, and hence prevent terminology divergence during
later phases of graph construction.

As future work, the method will continue to be retrained for its clusters
based on the ever-growing ORKG KB. Also, it is planned to implement a better
association that is not heuristic-based to determine if indeed clustering related
predicates produces templates.

Supplemental Material Statement: Dataset leveraged for constructing the clus-
ters is available from https://doi.org/10.5281/zenodo.6513499. The code base for
both training and evaluation is available from https://doi.org/10.5281/zenodo.
6514139. Please check the publication descriptions for further details.

https://www.orkg.org/orkg/comparison/R140131/
https://doi.org/10.5281/zenodo.6513499
https://doi.org/10.5281/zenodo.6514139
https://doi.org/10.5281/zenodo.6514139
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