Skip to main content

Organic Computing to Improve the Dependability of an Automotive Environment

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2022)

Abstract

The aim of our research is to implement and evaluate Organic Computing methods in a real vehicle environment and thus increase the reliability of the vehicle’s steering system. For this purpose, the steering system is simulated using an Organic Computing approach, which is extended with explicit fault diagnosis capabilities. In order to achieve the goals set by the demands of the automotive industry, several development steps are necessary. This paper outlines the research gaps and potentials as well as the approaches we envision to tackle these challenges. The starting point is a general concept involving three Electronic Control Units (ECUs) that act as active redundancy in the event of a component failure, e.g., an ECU failure. Next, the Organic Computing middleware in terms of an Artificial Hormone System in combination with Artificial DNA will be implemented and examined on real automotive hardware, resulting in a highly-reliable, resource- and cost-efficient fail-operational system. Beyond the classical working principles of Organic Computing to overcome ECU failures, our project implements system-level fault diagnosis to additionally monitor ECU performance in the context of the steering system. Forecasting, detecting and identifying faults in the system enables fault-specific recovery actions, e.g., preventive service migration or degradation. Overall, we combine promising relative work to an Organic Computing approach for a vehicle steering system with an industrial partnership with the goal of a functional ECU. After successful deployment, tests will be documented with suitable vehicle hardware in a corresponding simulation environment. This paper provides insight into the early stages of our research project.

Supported by Federal Ministry for Economic Affairs and Climate Action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brinkschulte, U., Fastnacht, F.: Applying the concept of artificial DNA and hormone system to a low-performance automotive environment. In: Schoeberl, M., Hochberger, C., Uhrig, S., Brehm, J., Pionteck, T. (eds.) ARCS 2019. LNCS, vol. 11479, pp. 87–99. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18656-2_7

    Chapter  Google Scholar 

  2. Yi, C.H., Kwon, K., Jeon, J.W.: Method of improved hardware redundancy for automotive system, pp. 204–207 (2015)

    Google Scholar 

  3. AutoKonf, Automatisch rekonfigurierbare Aktoriksteuerungen für ausfallsichere automatisierte Fahrfunktionen, Federal ministry of education and research. https://www.elektronikforschung.de/projekte/autokonf. Accessed 26 July 2022

  4. Brinkschulte, U.: Prototypic implementation and evaluation of an artificial DNA for self-descripting and self-building embedded systems. EURASIP J. Embed. Syst. 2017(1), 1–16 (2017). https://doi.org/10.1186/s13639-016-0066-2

    Article  MathSciNet  Google Scholar 

  5. Jetschke, G.: Mathematik der Selbstorganisation. Harry Deutsch Verlag, Frankfurt (1989)

    Book  MATH  Google Scholar 

  6. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36, 41–50 (2003)

    Article  Google Scholar 

  7. VDE/ITG (Hrsg.), VDE/ITG/GI-Positionspapier Organic Computing: Computer- und Systemarchitektur im Jahr 2010, GI, ITG, VDE (2003)

    Google Scholar 

  8. CSIRO, centre for complex systems (2009). http://www.dar.csiro.au/css/. Accessed 26 July 2022

  9. Brinkschulte, U., Pacher, M., Renteln, A.: An artificial hormone system for self-organizing real-time task allocation in organic middleware. In: Organic Computing. UCS, pp. 261–283. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-77657-4_12

    Chapter  Google Scholar 

  10. Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards self-organization in automotive embedded systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 32–46. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02704-8_4

    Chapter  Google Scholar 

  11. Klöpper, B., Honiden, S., Meyer, J., Tichy, M.: Planning with utility and state trajectory constraints in self-healing automotive systems. In: Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO 2010, Budapest, Hungary, 27 September - 1 October 2010, pp. 74–83. IEEE Computer Society (2010). https://doi.org/10.1109/SASO.2010.16

  12. Kolodny, L.: CNBC: tesla cut a steering component from some cars to deal with chip shortage, sources say. Published 7 Feb 2022, Updated 8 Feb 2022. https://www.cnbc.com/2022/02/07/tesla-cut-a-steering-component-to-deal-with-chip-shortage.html. Accessed 26 July 2022

  13. Maurer, J.M., Gerdes, C., Lenz, B., Winner, H.: Autonomes Fahren: Technische, rechtliche und gesellschaftliche Aspekte. Springer, Heidelberg (2015)

    Google Scholar 

  14. Brinkschulte, U.: Technical report: Artificial DNA - a concept for self-building embedded systems. ArXiv CoRR abs/1707.07617 (2017). http://arxiv.org/abs/1707.07617. Accessed 25 July 2022

  15. Brinkschulte, M.: Development of a vehicle simulator for the evaluation of a novel organic control unit concept. In: Reussner, R. H., Koziolek, A., Heinrich, R. (eds.) INFORMATIK 2020, pp. 883–890. Gesellschaft für Informatik, Bonn (2021). https://doi.org/10.18420/inf2020_79

  16. Xie, G., Zeng, G., Liu, Y., Zhou, J., Li, R., Li, K.: Fast functional safety verification for distributed automotive applications during early design phase. IEEE Trans. Ind. Electron. 65(5), 4378–4391 (2018)

    Article  Google Scholar 

  17. Filieri, A., Ghezzi, C., Tamburrelli, G.: A formal approach to adaptive software: continuous assurance of non-functional requirements. Form. Asp. Comp. 24, 163–186 (2011). https://doi.org/10.1007/s00165-011-0207-2

    Article  MathSciNet  MATH  Google Scholar 

  18. Hutter, E., Brinkschulte, U.: Towards a priority-based task distribution strategy for an artificial hormone system. In: Brinkmann, A., Karl, W., Lankes, S., Tomforde, S., Pionteck, T., Trinitis, C. (eds.) Architecture of Computing Systems - ARCS 2020. Lecture Notes in Computer Science, vol. 12155, pp. 69–81. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52794-5_6

    Chapter  Google Scholar 

  19. Brinkschulte, U., Hutter, E., Fastnacht, F.: Adapting the concept of artificial DNA and hormone system to a classical AUTOSAR environment. In: 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). IEEE (2019)

    Google Scholar 

  20. TTTechAuto: MotionWise. https://www.tttech-auto.com/products/safety-software-platform/motionwise/. Accessed 25 July 2022

  21. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Reif, W.: A framework for testing self-organization algorithms. GI Softwaretechniktrends 35(1), 1–2 (2015)

    Google Scholar 

  22. Eberhardinger, B., Anders, G., Seebach, H., Siefert, F., Knapp, A., Reif, W.: An approach for isolated testing of self-organization algorithms. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances. LNCS, vol. 9640, pp. 188–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-74183-3_7

    Chapter  Google Scholar 

  23. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  24. Kleine Büning, M., Sinz, C.: Automatic modularization of large programs for bounded model checking. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 186–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4_12

    Chapter  Google Scholar 

  25. Butterflytronics: Auto, und, Lenkung Symbol. Copyright. License: CC Version 4.0. Disclaimer: original symbol implemented, changes in size may made. https://icon-icons.com/de/symbol/Auto-und-Lenkung-Rad-transport-Fahrzeug/123460

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mathias Pacher , Uwe Brinkschulte or Roman Obermaisser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kisselbach, T., Meckel, S., Pacher, M., Brinkschulte, U., Obermaisser, R. (2022). Organic Computing to Improve the Dependability of an Automotive Environment. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21867-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21866-8

  • Online ISBN: 978-3-031-21867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics