Skip to main content

A Context Aware and Self-improving Monitoring System for Field Vegetables

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13642))

Included in the following conference series:

Abstract

Camera-based vision systems are becoming increasingly influential in the advancing automation of agriculture. Smart Farming technologies such as selective mechanical or chemical weeding are already firmly implemented processes in practice utilizing intelligent camera technology. The capabilities of such technologies recently advanced with the implementation of Deep Learning-based Computer Vision algorithms which proved their applicability in the agricultural domain by successfully solving classification, object detection and segmentation tasks. Due to the demanding environment of agricultural fields and the increasing dependence of farmers on the correct and reliable functioning of such systems, we propose to utilize agronomic context of a field to obtain a self-improving system for camera-based detection and segmentation of cabbage plants. For this purpose, we trained and tested a neural network for instance segmentation (Mask R-CNN) with different datasets of white cabbage (brassica oleracea). In our work, the relevant context parameters are the expected height of the plants as well as the color of the plant pixels. A cost-efficient camera setup utilizing a Structure from Motion (SfM) approach was used to gain complementary depth images. Knowledge gaps in our system appearing in form of missed or poorly detected and segmented plants can be closed by means of an Active Learning approach. This leads to an improvement in our experiments by up to 27.2% in terms of mean average precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow (2022). https://github.com/matterport/Mask_RCNN. Accessed 03 Sep 2022

  2. Beck, M.A., Liu, C.-Y., Bidinosti, C.P., Henry, C.J., Godee, C.M., Ajmani, M.: An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture. PLoS One 15(12), 1–23 (2020)

    Article  Google Scholar 

  3. Boysen, J., Stein, A.: AI-supported data annotation in the context of UAV-based weed detection in sugar beet fields using deep neural networks. In: Gandorfer, M., Hoffmann, C., El Benni, N., Cockburn, M., Anken, T., Floto, H. (eds.) 42. GIL-Jahrestagung, Künstliche Intelligenz in der Agrar- und Ernährungswirtschaft 2022, pp. 63–68. Gesellschaft für Informatik e.V., Bonn (2022)

    Google Scholar 

  4. Chandra, A.L., Desai, S.V., Balasubramanian, V.N., Ninomiya, S., Guo, W.: Active learning with point supervision for cost-effective panicle detection in cereal crops. Plant Methods 16(34), 1–16 (2020)

    Google Scholar 

  5. COCO. Detection evaluation (2022). http://cocodataset.org/#detection-eval. Accessed 03 Sep 2022

  6. dos Santos Ferreira, A., Freitas, D.M., Da Silva, G.G., Pistori, H., Folhes, M.T.: Unsupervised deep learning and semi-automatic data labeling in weed discrimination. Comput. Electron. Agric. 165, 104963 (2019)

    Article  Google Scholar 

  7. Ducket, T., Pearson, S., Blackmore, S., Grieve, B., Wilson, P., Gill, H. et al.: Agricultural robotics: the future of robotic agriculture. arXiv e-prints. https://arxiv.org/abs/1806.06762 (2018)

  8. Farooq, A., Hu, J., Jia, X.: Weed classification in hyperspectral remote sensing images via deep convolutional neural network. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium 2018, pp. 3816–3819. IEEE, Valencia (2018)

    Google Scholar 

  9. Gai, J., Tang, L., Steward, B.L.: Automated crop plant detection based on the fusion of color and depth images for robotic weed control. J. Field Rob. 37(1), 35–52 (2020)

    Article  Google Scholar 

  10. Gene-Mola, J., Sainz-Cortiella, R., Rosell-Polo, J.R., Morros, J.R., Ruiz-Hidalgo, J., Vilaplana, V., et al.: Fuji-SfM dataset: A collection of annotated images and point clouds for Fuji apple detection and location using structure-from-motion photogrammetry. Data Brief 30, 105591 (2020)

    Article  Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. arXiv e-prints. https://arxiv.org/abs/1703.06870 (2018)

  12. Jiang, Y., Li, C., Paterson, A.H., Robertson, J.S.: DeepSeedling: deep convolutional network and Kalman filter for plant seedling detection and counting in the field. Plant Methods 15(141), 1–19 (2019)

    Google Scholar 

  13. Kautzmann, T., Wuensche, M., Geimer, M., Mostaghim, S., Schmeck, H.: Holistic optimization of tractor management. In: Solutions for Intelligent and Sustainable Farming: Land-Technik AgEng 2011, pp. 275–281. VDI-Verlag, Hannover (2011)

    Google Scholar 

  14. Keras (2022). https://keras.io/getting_started/intro_to_keras_for_engineers/. Accessed 03 Sep 2022

  15. Lottes, P., Behley, J., Chebrolu, N., Milioto, A., Stachniss, C.: Robust joint stem detection and crop-weed classification using image sequences for plant-specific treatment in precision farming. J. Field Rob. 37(1), 20–34 (2020)

    Article  Google Scholar 

  16. Lottes, P., Hoeferlin, M., Sander, S., Muter, M., Schulze, P., Stachniss, L.C.: An effective classification system for separating sugar beets and weeds for precision farming applications. In: 2016 IEEE International Conference on Robotics and Automation (ICRA) 2016, pp. 5157–5163. IEEE, Stockholm, Sweden (2016)

    Google Scholar 

  17. Louargant, M., Jones, G., Faroux, R., Paoli, J.-N., Maillot, T., Gée, C., et al.: Unsupervised classification algorithm for early weed detection in row-crops by combining spatial and spectral information. Remote Sens. 10(5), 761–779 (2018)

    Article  Google Scholar 

  18. Lüling, N., Reiser, D., Griepentrog, H.W.: Volume and leaf area calculation of cabbage with a neural network-based instance segmentation. In: Stafford, J.V. (eds.) Precision Agriculture 2021: Proceedings of the 14th European Conference on Precision Agriculture, pp. 719–726. Wageningen Academic Publishers, Wageningen (2021)

    Google Scholar 

  19. Lüling, N., Reiser, D., Stana, A., Griepentrog, H.W.: Using depth information and color space variations for improving outdoor robustness for instance segmentation of cabbage, In: 2021 IEEE International Conference on Robotics and Automation (ICRA) 2021, pp. 2331–2336. IEEE, Xi’an, China (2021)

    Google Scholar 

  20. Madec, S., Jin, X., Lu, H., De Solan, B., Liu, S., Duyme, F., et al.: Ear density estimation from high resolution RGB imagery using deep learning technique. Agric. For. Meteorol. 264, 225–234 (2019)

    Article  Google Scholar 

  21. Moshou, D., Kateris, D., Pantazi, X.E., Gravalos, I.: Crop and weed species recognition based on hyperspectral sensing and active learning. In: Stafford, J.V. (ed.) Precision agriculture ’13, pp. 555–561. Wageningen Academic Publishers, Wageningen (2013)

    Google Scholar 

  22. Müller-Schloer, C., Tomforde, S.: Organic Computing – Technical Systems for Survival in the Real World, 5th edn. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68477-2

    Book  Google Scholar 

  23. Python 3.6.0 (2022). https://www.python.org/downloads/release/python-360/. Accessed 03 Sep 2022

  24. Reiser, D., Kamman, A., Vázquez Arellano, M., Griepentrog, H.W.: Using terrestrial photogrammetry for leaf area estimation in maize under different plant growth stages. In: Stafford, J.V (eds.), Precision Agriculture 2019: Proceedings of the 12th European Conference on Precision Agriculture 2019, pp. 331–337. Wageningen Academic Publishers, Wageningen (2019)

    Google Scholar 

  25. Reiser, D., Sehsah, E.-S., Bumann, O., Morhard, J., Griepentrog, H.W.: Development of an autonomous electric robot implement for intra-row weeding in vineyards. Agriculture 9(1), 18–30 (2019)

    Article  Google Scholar 

  26. Settles, B.: Active learning literature survey. Technical report 1648, University of Wisconsin Madison (2009)

    Google Scholar 

  27. Smith, P., Gregory, P.: Climate change and sustainable food production. Proc. Nutr. Soc. 72(1), 21–28 (2013)

    Article  MathSciNet  Google Scholar 

  28. Stein, A., Tomforde, S., Diaconescu, A., Hähner, J., Müller-Schloer, C.: A concept for proactive knowledge construction in self-learning autonomous systems. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W) 2018, pp. 204–213. IEEE, Trento, Italy (2018)

    Google Scholar 

  29. Szeliski, R.: Computer Vision: Algorithms and Applications, Chapter 5: 2nd edn. Springer, Cham (2022). https://doi.org/10.1007/978-1-84882-935-0

  30. Tensorflow (2021). https://www.tensorflow.org/install/pip. Accessed 22 Nov 2021

  31. Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Mueller-Schloer, C.: Observation and control of organic systems. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing—A Paradigm Shift for Complex Systems. Autonomic Systems, vol. 1, pp. 325–338. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0130-0_21

    Chapter  Google Scholar 

  32. Wspanialy, P., Brooks, J., Moussa, M.: An image labeling tool and agricultural dataset for deep learning. arXiv e-prints. https://arxiv.org/abs/2004.03351 (2020)

  33. Yang, Y., Li, Y., Yang, J., Wen, J.: Dissimilarity-based active learning for embedded weed identification. Turk. J. Agric. For. 46(3), 390–401 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

The project DiWenkLa (Digital Value Chains for a Sustainable Small-Scale Agriculture) is supported by funds of the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program (grant reference 28DE106A18). DiWenkLa is also supported by the Ministry for Food, Rural Areas and Consumer Protection Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Lüling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lüling, N., Boysen, J., Kuper, H., Stein, A. (2022). A Context Aware and Self-improving Monitoring System for Field Vegetables. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21867-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21866-8

  • Online ISBN: 978-3-031-21867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics