Skip to main content

Semi-model-Based Reinforcement Learning in Organic Computing Systems

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2022)

Abstract

Reinforcement Learning (RL) can generally be distinguished into two main classes: model-based and model-free. While model-based approaches use some kind of model of the environment and exploit it for learning, model-free methods learn with the complete absence of a model. Interpolation-based RL, and more specifically Interpolated Experience Replay (IER), comes with some properties that fit very well into the domain of Organic Computing (OC). We demonstrate how an OC system can benefit from this concept and attempt to place IER into one of the two RL classes. To do so, we give a broad overview of how both of the terms (model-based and model-free) are defined and detail different model-based categorizations. It turns out that replay-based techniques are quite on the edge between both. Furthermore, even if interpolation based on stored samples could be classified as a kind of model, the general way of using the interpolated experiences remains replay-based. Here, the borders get blurry and the classes overlap. In conclusion, we define a third class: semi-model-based. Additionally, we show that some architectural approaches of the OC domain fit this new class very well and even encourage such methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deisenroth, M., Rasmussen, C.E.: PILCO: a model-based and data-efficient approach to policy search. In: Proceedings of the 28th International Conference on machine learning (ICML-11), pp. 465–472. Citeseer (2011)

    Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)

    Google Scholar 

  3. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016). https://doi.org/10.1609/aaai.v30i1.10295, https://ojs.aaai.org/index.php/AAAI/article/view/10295

  4. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning (2017). https://doi.org/10.48550/ARXIV.1710.02298

  5. Jacob, E.K.: Classification and categorization: a difference that makes a difference (2004). publisher: Graduate School of Library and Information Science. University of Illinois

    Google Scholar 

  6. Kaiser, L., et al.: Model-based reinforcement learning for atari. arXiv preprint arXiv:1903.00374 (2019)

  7. LaValle, S.M., et al.: Rapidly-exploring random trees: a new tool for path planning. publisher: Ames. IA, USA (1998)

    Google Scholar 

  8. Levine, S., Abbeel, P.: Learning neural network policies with guided policy search under unknown dynamics. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  9. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning (2015). https://doi.org/10.48550/ARXIV.1509.02971

  10. Lin, L.J.: Reinforcement learning for robots using neural networks. Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science, Technical report (1993)

    Google Scholar 

  11. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

    Google Scholar 

  12. Mnih, V., et al.: Playing Atari with deep reinforcement learning. CoRR abs/1312.5602 (2013). http://arxiv.org/abs/1312.5602

  13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  14. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M.: Model-based reinforcement learning: a survey (2020). https://doi.org/10.48550/ARXIV.2006.16712

  15. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: reinforcement learning with less data and less time. Mach. Learn. 13(1), 103–130 (1993). https://doi.org/10.1007/BF00993104

    Article  Google Scholar 

  16. Müller-Schloer, C., Schmeck, H., Ungerer, T.: Organic Computing-a Paradigm Shift for Complex Systems. Springer, Cham (2011). https://doi.org/10.1007/978-3-0348-0130-0

    Book  MATH  Google Scholar 

  17. M üller-Schloer, C., Tomforde, S.: Organic computing - technical systems for survival in the real world. Birkh äuser (2017). https://doi.org/10.1007/978-3-319-68477-2

  18. Peng, B., Li, X., Gao, J., Liu, J., Wong, K.F., Su, S.Y.: Deep dyna-Q: integrating planning for task-completion dialogue policy learning. arXiv preprint arXiv:1801.06176 (2018)

  19. Pilar von Pilchau, W.: Averaging rewards as a first approach towards interpolated experience replay. In: Draude, C., Lange, M., Sick, B. (eds.) INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft (Workshop-Beiträge), pp. 493–506. Gesellschaft für Informatik e.V., Bonn (2019). https://doi.org/10.18420/inf2019_ws53

  20. Pilar von Pilchau, W., Stein, A., Hähner, J.: Bootstrapping a DQN replay memory with synthetic experiences. In: Merelo, J.J., Garibaldi, J., Wagner, C., Bäck, T., Madani, K., Warwick, K. (eds.) Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), 2–4 November 2020 (2020). https://doi.org/10.5220/0010107904040411

  21. Pilar von Pilchau, W., Stein, A., Hähner, J.: Synthetic experiences for accelerating DQN performance in discrete non-deterministic environments. Algorithms 14(8), 226 (2021). https://doi.org/10.3390/a14080226

  22. Pilar von Pilchau, W., Stein, A., Hähner, J.: Interpolated experience replay for continuous environments. In: Proceedings of the 14th International Joint Conference on Computational Intelligence (IJCCI 2020), 24–46 October 2022, p. to appear (2022)

    Google Scholar 

  23. Prothmann, H., et al.: Organic traffic control. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing — A Paradigm Shift for Complex Systems. Autonomic Systems, vol. 1, pp. 431–446. Springer, Cham (2011). https://doi.org/10.1007/978-3-0348-0130-0_28

    Chapter  Google Scholar 

  24. Sander, R.M.: Interpolated experience replay for improved sample efficiency of model-free deep reinforcement learning algorithms. Ph.D. thesis, Massachusetts Institute of Technology (2021)

    Google Scholar 

  25. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). https://doi.org/10.48550/ARXIV.1707.06347

  26. Schwarz, H., Köckler, N.: Interpolation und approximation. In: Numerische Mathematik, pp. 91–182. Vieweg+Teubner Verlag (2011). https://doi.org/10.1007/978-3-8348-8166-3_4

  27. Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362(6419), 1140–1144 (2018)

    Google Scholar 

  28. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017). https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  29. Stein, A., Tomforde, S., Diaconescu, A., Hähner, J., Müller-Schloer, C.: A concept for proactive knowledge construction in self-learning autonomous systems. In: 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems (FAS*W), pp. 204–213 (2018). https://doi.org/10.1109/FAS-W.2018.00048

  30. Sutton, R.S.: Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In: Porter, B., Mooney, R. (eds.) Machine Learning Proceedings 1990, pp. 216–224. Morgan Kaufmann, San Francisco (CA) (1990). https://doi.org/10.1016/B978-1-55860-141-3.50030-4

  31. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart Bull. 2(4), 160–163 (1991)

    Article  Google Scholar 

  32. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press (2018)

    Google Scholar 

  33. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. Adv. Neural Inf. Process. Syst. 12 (1999)

    Google Scholar 

  34. Tomforde, S., Sick, B., Müller-Schloer, C.: organic computing in the spotlight. CoRR abs/1701.08125 (2017)

    Google Scholar 

  35. Van Hasselt, H.P., Hessel, M., Aslanides, J.: When to use parametric models in reinforcement learning? Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  36. Vanseijen, H., Sutton, R.: A deeper look at planning as learning from replay. In: International Conference on Machine Learning, pp. 2314–2322. PMLR (2015)

    Google Scholar 

  37. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling network architectures for deep reinforcement learning. In: International Conference on Machine Learning, pp. 1995–2003. PMLR (2016)

    Google Scholar 

  38. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992). https://doi.org/10.1007/BF00992698

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzel Pilar von Pilchau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

von Pilchau, W.P., Stein, A., Hähner, J. (2022). Semi-model-Based Reinforcement Learning in Organic Computing Systems. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21867-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21866-8

  • Online ISBN: 978-3-031-21867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics