Skip to main content

GAE-LCT: A Run-Time GA-Based Classifier Evolution Method for Hardware LCT Controlled SoC Performance-Power Optimization

  • Conference paper
  • First Online:
Architecture of Computing Systems (ARCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13642))

Included in the following conference series:

Abstract

Learning classifier tables (LCTs) are classifier based and lightweight hardware reinforcement learning building blocks which inherit the concepts of learning classifier systems. LCTs are used as a per-core low level controllers to learn and optimize potentially conflicting objectives e.g. achieving a performance target under a power budget. A supervisor is used at the system level which translate system and application requirements into objectives for the LCTs. The classifier population in the LCTs has to be evolved in run-time to adapt to the changes in the mode, performance targets, constraints or workload being executed. Towards this goal, we present GAE-LCT, a genetic algorithm (GA) based classifier evolution for hardware learning classifier tables. The GA uses accuracy to evolve classifiers in run-time. We introduce extensions to the LCT to enable accuracy based genetic algorithm. The GA runs as a software process on one of the cores and interacts with the hardware LCT via interrupts. We evaluate our work using DVFS on an FPGA using Leon3 cores. We demonstrate GAE-LCT’s ability to generate accurate classifiers in run-time from scratch. GAE-LCT achieves 5% lower difference to IPS reference and 51.5% lower power budget overshoot compared to Q-table while requiring 75% less memory. The hybrid GAE-LCT also requires 12 times less software overhead compared to a full software implementation.

We thank our project partners in the IPF project and acknowledge the financial support from the DFG under Grant HE4584/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernauer, A., Zeppenfeld, J., Bringmann, O., Herkersdorf, A., Rosenstiel, W.: Combining software and hardware LCS for lightweight on-chip learning. In: Hinchey, M., et al. (eds.) BICC/DIPES -2010. IAICT, vol. 329, pp. 278–289. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15234-4_27

    Chapter  MATH  Google Scholar 

  2. Bitirgen, R., Ipek, E., Martinez, J.F.: Coordinated management of multiple interacting resources in chip multiprocessors: a machine learning approach. In: 2008 41st IEEE/ACM International Symposium on Microarchitecture (2008)

    Google Scholar 

  3. Bolchini, C., Ferrandi, P., Lanzi, P.L., Salice, F.: Evolving classifiers on field programmable gate arrays: migrating XCS to FPGAs. J. Syst. Archit. 52, 516–533 (2006)

    Article  Google Scholar 

  4. Bouajila, A., et al.: Autonomic system on chip platform. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing–A Paradigm Shift for Complex System, vol. 1, pp. 413–425. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0130-0_27

    Chapter  Google Scholar 

  5. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: How XCS evolves accurate classifiers. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001) (2001)

    Google Scholar 

  6. Chen, Z., Marculescu, D.: Distributed reinforcement learning for power limited many-core system performance optimization. In: 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2015)

    Google Scholar 

  7. Dhiman, G., Rosing, T.S.: Dynamic power management using machine learning. In: Proceedings of the 2006 IEEE/ACM International Conference on Computer-Aided Design (2006)

    Google Scholar 

  8. Donyanavard, B., et al.: SOSA: self-optimizing learning with self-adaptive control for hierarchical system-on-chip management. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (2019)

    Google Scholar 

  9. Gaisler, J., Catovic, E., Isomaki, M., Glembo, K., Habinc, S.: Grlib IP core user’s manual. Gaisler research (2007)

    Google Scholar 

  10. Gupta, U., Mandal, S.K., Mao, M., Chakrabarti, C., Ogras, U.Y.: A deep Q-learning approach for dynamic management of heterogeneous processors. IEEE Comput. Archit. Lett. 18, 14–17 (2019)

    Article  Google Scholar 

  11. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: MiBench: a free, commercially representative embedded benchmark suite. In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization (2001)

    Google Scholar 

  12. Hansmeier, T.: Self-aware operation of heterogeneous compute nodes using the learning classifier system XCS. In: Proceedings of the 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (2021)

    Google Scholar 

  13. Hansmeier, T., Platzner, M.: An experimental comparison of explore/exploit strategies for the learning classifier system XCS. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion (2021)

    Google Scholar 

  14. Kovacs, T.: Strength or accuracy? Fitness calculation in learning classifier systems. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 1999. LNCS (LNAI), vol. 1813, pp. 143–160. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45027-0_7

    Chapter  Google Scholar 

  15. Liu, W., Tan, Y., Qiu, Q.: Enhanced Q-learning algorithm for dynamic power management with performance constraint. In: 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2010)

    Google Scholar 

  16. Maurer, F., Donyanavard, B., Rahmani, A.M., Dutt, N., Herkersdorf, A.: Emergent control of MPSOC operation by a hierarchical supervisor/reinforcement learning approach. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2020)

    Google Scholar 

  17. Pagani, S., Manoj, P.S., Jantsch, A., Henkel, J.: Machine learning for power, energy, and thermal management on multicore processors: a survey. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 39, 101–116 (2018)

    Google Scholar 

  18. Rajat, R., Meng, Y., Kuppannagari, S., Srivastava, A., Prasanna, V., Kannan, R.: QTAccel: a generic FPGA based design for q-table based reinforcement learning accelerators. In: Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (2020)

    Google Scholar 

  19. Shen, H., Lu, J., Qiu, Q.: Learning based DVFS for simultaneous temperature, performance and energy management. In: Thirteenth International Symposium on Quality Electronic Design (ISQED) (2012)

    Google Scholar 

  20. Wang, Y.C., Usher, J.M.: Application of reinforcement learning for agent-based production scheduling. Eng. Appl. Artif. Intell. 18, 73–82 (2005)

    Article  Google Scholar 

  21. Zeppenfeld, J., et al.: Applying ASOC to multi-core applications for workload management. In: Müller-Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing–A Paradigm Shift for Complex Systems. Autonomic Systems, vol. 1, pp. 461–472. Springer, Basel (2011). https://doi.org/10.1007/978-3-0348-0130-0_30

    Chapter  Google Scholar 

  22. Zeppenfeld, J., Bouajila, A., Stechele, W., Herkersdorf, A.: Learning classifier tables for autonomic systems on chip. INFORMATIK 2008. Beherrschbare Systeme-dank Informatik. Band 2 (2008)

    Google Scholar 

  23. Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Li, P.: Energy-efficient scheduling for real-time systems based on deep Q-learning model. IEEE Trans. Sustain. Comput. 4, 132–141 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmol Surhonne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Surhonne, A., Doan, N.A.V., Maurer, F., Wild, T., Herkersdorf, A. (2022). GAE-LCT: A Run-Time GA-Based Classifier Evolution Method for Hardware LCT Controlled SoC Performance-Power Optimization. In: Schulz, M., Trinitis, C., Papadopoulou, N., Pionteck, T. (eds) Architecture of Computing Systems. ARCS 2022. Lecture Notes in Computer Science, vol 13642. Springer, Cham. https://doi.org/10.1007/978-3-031-21867-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21867-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21866-8

  • Online ISBN: 978-3-031-21867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics